Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

За счет чего цемент твердеет

За счет чего цемент твердеет

При пропаривапии портландцемента повышается его прочность. С увеличением температуры пропарнвапия продолжительность индукционного периода, как показали исследования, заметно уменьшается и увеличивается скорость образования гидросиликатпой фазы, которая проходит через минимум при температуре около 323 К.
Время появления гидросиликата зависит от изменения концентрации ионов Са2+ и ОН1- в жидкой фазе цементного теста и ускорения диффузии этих ионов с повышением температуры. При гидратации C2S в жидкой фазе весьма медленно устанавливается равновесная концентрация гндрокснда кальция, необходимая для образования гидросиликатов.
Пропаривание C2S при 323 К вызывает образование метастабильной фазы I гидросиликата кальция с основностью C:S выше 2. Пропаривание при 343—363 К не приводит к образованию этой фазы. После исчезновения фазы I появляется фаза II, характеризующаяся меньшей основностью. С повышением температуры гидратации до 363 К основность гидросиликатной фазы несколько уменьшается. В результате образуются гидросиликаты кальция. При пропаривании образцов из С3А быстро появляется кубический С3АН6. В тех же условиях гидратация C4AF приводит к образованию серии твердых растворов С3АН6—C3FH6.
При гидратации смеси C3S + C3A либо алюминатных фаз индукционный период практически отсутствует из-за сильного разогрева смеси, причем максимальная температура наблюдается в тот период, когда в системе уже появилась гидросиликатная фаза. Если в смеси содержится гипс, то из-за образования гидросульфоалюмината кальция разогрева не происходит, причем реакции, ведущие к возникновению индукционного периода при гидратации СзЭ, протекают так же, как и в отсутствии С3А.
Характер связи между степенью гидратации и прочностью проявляется в показателях удельной прочности, характеризуемой отношением прочности теста нормальной густоты на сжатие к степени гидратации.
Видно, что тепловлажностная обработка по-разному влияет на прочность цементного камня из основных клинкерных минералов (у образцов из С3А она полностью разрушила цементный камень). Удельная прочность цементного камня из C3S, подвергнутого тепловлажностной обработке в течение 4 ч при 343 и 363К, оказалась примерно такой же, как у образцов C3S, твердевших 7 сут при 293 К. С увеличением продолжительности тепловлажностной обработки до 1 сут наблюдается тенденция к уменьшению удельной прочности цементного камня, что так же как и при обработке C4AF вызывается, по-видимому, перекристаллизацией продуктов гидратации. Аномалия прочности цементного камня из C3S при 323К наблюдается в широком интервале значений степени гидратации и объясняется, по всей вероятности, образованием при этой температуре промежуточной высокоосиовиой гидросиликатной фазы I.
Таким образом, можно видеть, что тепловлажностная обработка при температурах 353—ЗбЗК не приводит к существенным изменениям фазового состава продуктов гидратации портландцемента, твердевшего после обработки в нормальных условиях, по сравнению с образцами нормального твердения. Поэтому достигаемое при пропаривании повышение прочности следует рассматривать в первую очередь как следствие увеличения степени гидратации портландцемента, хотя не исключено, что на нем сказалось влияние особенностей образовавшейся кристаллической структуры продуктов гидратации.
Усиление гидратации с повышением температуры приводит к утолщению экранирующих гелевых пленок из труднорастворимых гидратных новообразований, прилегающих к поверхности исходных зерен цемента, что замедляет процессы гидратации. Наблюдения за контракцией также указывают на временное торможение гидратации в период изотермического прогрева в результате утолщения экранирующих пленок. Эти явления происходят преимущественно при повышенном количестве С3А и недостаточном — гипса. Высокое содержание С3А вызывает также повышение содержания кристаллизационной воды в продукте гидратации, склонность к сильной усадке и большое тепловыделение при гидратации.
Из этого видно, что рациональное содержание гипса играет огромную роль в процессах твердения портландцемента при пропариваппн, куда большую, чем при нормальной температуре. Химическое связывание С3А в гидросульфоалюминат кальция устраняет в начале твердения ряд нежелательных явлений, обусловленных гидратацией С3А. Но независимо от этого в цементном камне неравновесное состояние гидроалюмпнатных фаз достигается с некоторым запозданием из-за недостаточной стабильности гидросульфоалюмината кальция в условиях пропаривания. По одним данным гидросульфоалюминат кальция устойчив даже при автоклавной обработке при 0,9 МПа; по другим — разлагается при температуре ниже 373К.
Степень его устойчивости при пропаривании зависит от ряда факторов и в первую очередь от концентрации извести в растворе, условий синтеза, характера кристаллизации, длительности твердения и др. При высоком содержании С3А и особо тонком помоле цемента наблюдается заметное изменение прочности цемента, что объясняют отмеченным выше распадом гидросульфоалюминатов кальция; это, по-видимому, и является одной из причин неодинаковой эффективности пропаривания портландцементов с различным содержанием С3А.
Установленное положительное влияние содержания С3А (примерно 15% от количества С3Б) на твердение портландцемента при нормальных температурах сохраняется и в условиях пропаривания. Можно, таким образом, считать, что при содержании в портландцементах 55—60% C3S, количество С3А не должно превышать примерно 8—9%.
Низкоалюминатные цементы с 5—6% С3А, не содержащие активных минеральных добавок, обнаруживают высокую прочность после пропаривания и к 28 сут. Введение в состав низко- и среднеалюминатных (не более 9% С3А) портландцементов до 10% активных минеральных добавок не снижает показателей прочности в указанные сроки. Высокоалюминатные (10% С3А) клинкеры оказываются эффективными при пропаривании лишь в составе шлакопортландцемента. Шлакопортландцементы с 30—40% шлака при одной с портландцементом марке имеют после пропаривания более высокую, чем у портландцемента, суточную и 28-суточную прочность.
Весьма эффективны при тепловлажностной обработке шлакопортландцементы на основе клинкера, содержащие 7—9% С3А и 55—60% C3S. При высокой марке из-за увеличения удельной поверхности (более 3000 см2/м) коэффициент использования активности у всех цементов и особенно у шлакопортландцемента повышается. Применение тонкоизмельчениых высокопрочных цементов и ОБТЦ дает возможность сократить изотермическую стадию при пропаривании до 2 ч, причем увеличение продолжительности этой стадии не во всех случаях приводит к положительным результатам. Эти цементы отличаются интенсивным ростом прочности после пропаривания, чему способствует 7—8% активной минеральной добавки, к 28 суткам они по прочности не отличаются от цементов, твердевших при нормальной температуре.
При подъеме температуры формирование крупнокристаллических гидратных новообразований ускоряется и очень быстро появляется кристаллизанионный каркас. По мере пропаривания происходит рост составляющих каркас кристаллов, который одновременно с повышением прочности приводит к появлению внутренних напряжений.
Содержащиеся в бетоне свободная вода, воздух, заполнители и цементный камень характеризуются разными значениями температурного коэффициента объемного расширения. Это вызывает напряжения в бетоне, способствующие усилению деструктивных процессов. Ускорение гидратации при повышенных температурах усиливает тепловыделение в цементе, особенно при высоких расходах быстротвердеющих и высокомарочных цементов. Температура в пропаренном изделии на 281—288 К превышает температуру пропарочной камеры, что вызывает испарение свободной воды из цементного камня и его высушивание. Это способствует также развитию деструктивных процессов, которые усиливаются при неравномерном распределении температуры в крупных и сложных конструкциях.
Такие отрицательные явления можно предотвратить, подбирая рациональное и, по возможности, пониженное В/Ц, прибегая к предварительному выдерживанию сформованного изделия при нормальной температуре до достижения им критической прочности, составляющей примерно не менее 0,5 МПа. Продолжительность выдерживания, как показано С. А. Мироновым и Д. А. Малининой, зависит от марки цемента и кинетики нарастания прочности в начальный период твердения. Для элементарной структуры, способной противостоять силам напряжения, возникающим в результате быстрого подъема температуры в цементном камне, характерна критическая прочность.
Чтобы уменьшить эти напряжения, необходим медленный и плавный подъем температуры в пропарочной камере. При этом подбирают рациональную продолжительность изотермического прогрева при весьма строгом режиме охлаждения в зависимости от размеров и пустотности прогреваемых бетонных конструкций. Во время охлаждения в цементе (бетоне) температура и соответственно парциальное давление воды больше, чем в пропарочной камере, что может вызвать интенсивное испарение влаги (20—40% воды затворения). В результате в цементном камне создается повышенная пористость, ухудшающая некоторые свойства цемента (бетона).
При твердении образцов из растворов на цементах без добавок трепела при температуре 353—373 К уменьшается объем микропор радиусом меньше 5-10-5 см и увеличивается содержание макропор с радиусом больше МО-4 см, что способствует снижению морозостойкости. При охлаждении объем компонентов бетона сокращается неравномерно — в соответствии с присущим каждому компоненту термическим коэффициентом расширения (сжатия), что вызывает растягивающие напряжения и нарушает структуру бетона.
Интересным является режим пропаривания в зависимости от скорости тепловыделения цемента при его гидратации. Сформованное бетонное изделие помещают в нагретую до 333—353 К форму и прогревают 1,5—2 ч до начала тепловыделения цемента, после чего подача теплоносителя прекращается и дальнейший нагрев происходит уже за счет тепловыделения цемента. Особенности изменения структуры и прочности цементного камня при его пропаривании оказывают большое влияние на важнейшие свойства бетона — прочность, усадку, морозостойкость, ползучесть. Сложность физико-химических процессов, протекающих при тепловлажностной обработке цементов, вызывает необходимость разработки рациональной технологии пропаривания, применительно к особенностям изготавливаемого бетона, к составу используемых цементов и др.
Тепловлажностная обработка вяжущих цементов при повышенном давлении водяного пара (запаривание) осуществляется обычно при 0,9 МПа и соответственно 448 К- В последнее время установлена целесообразность применения давления пара в 1,2 и 1,6 МПа. Автоклавная обработка является способом интенсивного ускорения твердения вяжущих, крайне медленно затвердевающих при нормальной температуре и пропаривании.
Автоклавная обработка существенно ускоряет также твердение и портландцемента. Состав продуктов гидратации синтетического C3S в условиях автоклавной обработки зависит от температуры. При 448—473 К образуются C2SH(A), C2SH(C) и C3SH2 наряду с Са(ОН)2 в соотношениях, зависящих от условий твердения. При 433—523 К в результате гидратации p-C2S появляется C2SH(C).
Гидратация С3А при температурах ниже 488 К приводит к образованию С3АН6; гидратация C4AF при температуре ниже 523 К сопровождается образованием твердых растворов серии Сз(А, F) Не, гематита и Са(ОН)2.
Реальные клинкерные фазы в составе портландцемента гидратируются не только в зависимости от температуры, но и от дисперсности, характера охлаждения клинкера при обжиге и других факторов. Как и при нормальной температуре в условиях запаривания гидратирующиеся клинкерные фазы заметно влияют друг на друга.
Поскольку при автоклавной обработке силикатов кальция образуются Са(ОН)2и высокоосновные гидросиликаты кальция, обусловливающие пониженную прочность, целесообразно вводить в состав портландцемента преимущественно кварцевый песок для химического связывания Са(ОН)2 и получения, как показано выше, низкоосновных гидросиликатов кальция серии CSH(B), отличающихся повышенной прочностью. Поэтому для тепловлажностной обработки при повышенном давлении изготовляют цементы, содержащие тонкоиз-мельченный кварцевый песок (песчанистые портландцементы).
При гидратации песчанистого портландцемента в условиях запаривания образуется преимущественно CSH(B), являющийся продуктом гидратации в этих условиях C3S и j3-C2S. Он появляется также в результате химического взаимодействия Са(ОН)2 и кварцевого песка. Взаимодействие кварцевого песка с С3А и C4AF приводит к образованию преимущественно гидрогранатов. Для производства песчанистого портландцемента можно применять клинкеры разного химико-минералогического состава, в зависимости от которого устанавливается количество добавляемого кварцевого песка. Весьма эффективны алитовые низкоалюминатные клинкеры.
Применение песчанистого портландцемента для получения бетонов позволяет при автоклавной обработке не только существенно экономить портландцемент, но и получать строительные изделия с высокой прочностью. Вместе с тем необходимо учитывать, что некоторые отрицательные явления, вызываемые твердением в условиях пропаривания при атмосферном давлении, еще больше проявляются при автоклавной обработке из-за более высокой температуры. Так, при запаривании образуется крупнокристаллическая структура цементного камня. При этом повышается пористость камня; расширение изделия составляет 0,3—0,4 мм/м. С целью уменьшения деструктивных процессов необходим медленный подъем температуры в автоклаве для того, чтобы нарастающая прочность камня могла противостоять им. Известный интерес представляет способ НИИЖБа, по которому свежеотформованное изделие в начальный период тепловой обработки подвергается некоторому внешнему обжатию в результате давления, создаваемого водяным паром, быстро поступающим в автоклав.
Цементный камень, получаемый в растворах и бетонах при запаривании, вследствие особенностей структуры отличается некоторой хрупкостью, несколько повышенной водопроницаемостью и пониженной морозостойкостью. Цементные бетоны плохо выдерживают ударные нагрузки, но обладают высокой стойкостью против истирания. Обращает на себя внимание несколько замедленный рост прочности «автоклавного» бетона во времени с последующим значительным нарастанием в зависимости от влажностного состояния бетона. При высокой влажности наблюдается тенденция к понижению прочности при росте модуля упругости; высушивание приводит к противоположным результатам.
Твердение при повышенных температурах происходит в среде, не содержащей водяного пара; повышение температуры при атмосферном давлении в этих случаях достигается путем применения термоактивных форм, электропрогрева. При автоклавной обработке водяной пар заменяется другим теплоносителем. Обшим важным обстоятельством является необходимость обеспечить при автоклавной обработке такие условия твердения, при которых не происходит высушивание гидратирующегося цемента (бетона).

Читайте так же:
Цемент смешать с битумной мастикой

За счет чего цемент твердеет

  • Главная
  • О журнале
  • Свежий номер
  • Архив
  • Авторам
  • Наши партнеры
  • Статьи

Влияние современных технологий производства цемента с интенсификаторами помола на эффективность действия химических добавок

Е.А. ЯНЮК, инженер-технолог, группа предприятий «СКТ-Стандарт», г. Гомель, Беларусь

Ключевые слова: интенсификаторы помола цемента, химические добавки для бетона, экономия цемента, совершенствование подбора добавок
Keywords: intensifiers of cement grinding, chemical additives for concrete, saving of cement, improving the selection of additives

В статье обобщены данные о применении интенсификаторов помола в производстве цемента, а также приведены сведения о добавках для бетона, помогающих изменить эксплуатационные свойства бетонных смесей. Изучены типы и виды химических добавок. Исследованы побочные действия интенсификаторов помола цемента на химические добавки для бетона. Экономии цемента, а также повышению качества бетона будут способствовать правильное совмещение добавок с учетом их влияния на свойства цемента и бетонной смеси. Кроме того, в статье излагаются некоторые аспекты совершенствования подбора добавок для бетона, учитывая уже входящие в состав цемента добавки.

В настоящее время на строительном рынке представлено большое количество различных видов технологических добавок для цементов и бетонов, выпускаемых как зарубежными производителями, так и отечественными предприятиями. Наиболее востребованы продукты на основе лигносульфонатов технических (ЛСТ), продукты конденсации нафталин-, меламинсульфокислоты и формальдегида, продукты на основе поликарбоксилатов (ПК), а также продукты класса соединений амины и гликоли. Однако наличие большого выбора добавок не всегда дает возможность получения бетона с заданными характеристиками. Речь идет не только о влиянии добавок на свойства бетона, но и о совместимости данных добавок с уже имеющимися в составе цемента интенсификаторами помола.

Помимо вышеизложенного, значительное влияние оказывает технология производства цемента, которая и определяет качественные характеристики бетона.

Читайте так же:
Как развести цемент для фундамента гаража

Виды интенсификаторов помола и эффект введения их в состав цемента

Наиболее распространенным помольным оборудованием сегодня являются шаровые мельницы открытого и замкнутого цикла. Эффективность последних значительно выше за счет прохождения цементом нескольких стадий сепарации, позволяющей разделить частицы на фракции, более мелкую отправив в конец процесса, а крупную – обратно на домол. Учитывая такую особенность технологического процесса, применение замкнутого цикла целесообразно еще и потому, что измельчаемый материал, как правило, состоит из компонентов различной размолоспособности.

Размалываемость цементного клинкера зависит от его минералогического состава, т.к. отдельные клинкерные минералы имеют различную микротвердость и хрупкость. При открытом цикле помола легкоразмалываемые компоненты переизмельчаются, а в замкнутом они размалываются до одинаковой тонкости. Своевременное удаление из мельницы годного по дисперсности продукта предотвращает его переизмельчение, на которое затрачивается большое количество энергии. В связи с тем что доменный шлак размалывается труднее, чем клинкер, из-за большего содержания в нем оксида железа, придающего ему пластичность, помол шлакопортландцемента часто проводят по открытому циклу во избежание сегрегации размалываемых частиц клинкера и шлака [1].

В мельницу для интенсификации помола через специальное устройство впрыскивается интенсификатор помола, который покрывает вновь образующиеся поверхности «пленкой», что предотвращает их агрегирование. Кроме того, он проникает в микротрещины материала, понижая тем самым его сопротивляемость к размолу. Цемент приобретает большую текучесть, что положительно сказывается на скорости его перемещения. В результате производительность мельницы увеличивается на 20-30% с соответствующим снижением удельного расхода электроэнергии. На рис. 1 представлена блок-схема эффективности использования интенсификаторов при помоле цемента.


Рис. 1. Эффективность использования интенсификаторов при помоле цемента

Цемент без интенсификатора помола на ранних стадиях твердения имеет тонковолокнистое строение продуктов гидратации. На данном этапе волокнистое строение имеют кристаллы эттрингита, вокруг которых формируется гидросиликатный гель. К 7-м суткам наблюдается сращивание отдельных кристаллов и формирование структурированной сетки. В возрасте 28 суток продукты гидратации представляют собой как отдельные пластинчатые кристаллы, так и срощенные в кристаллиты образования с высокой микропористостью.

Для цемента с интенсификатором помола уже в начальные сроки твердения отмечается повышенное количество новообразований в виде гелеобразных продуктов, пророщенных пластинчатыми кристаллами портландита и, возможно, моносульфоалюмината кальция. С возрастом продуктов гидратации становится больше, но они не имеют четкой кристаллизации и представлены «оплавленными» новообразованиями довольно плотной структуры. Структура цементного камня с добавками за счет тесного переслоения части кристаллов эттрингита, портландита малых размеров с гелеобразными плотными гидросиликатными фазами отличается более однородным строением, что положительно влияет на прочность, особенно в ранние сроки твердения.

В многочисленных работах по влиянию поверхностно-активных веществ (ПАВ) на процессы гидратации доказано, что в присутствии малых количеств ПАВ изменяется степень пересыщения за счет различного влияния на процесс растворения исходной и возникновения новой фазы. Изменения состава жидкой фазы в системе «цемент – вода» определяют в дальнейшем темпы и механизм гидратации многокомпонентного вяжущего.

В первоначальный период присутствие некоторых анионактивных ПАВ способствует увеличению количества переходящих в раствор ионов Са2+, Al3+ и SO42-. Такое пересыщение воды затворения ионами определяет высокую скорость гидратации клинкерных минералов и сокращает период структурообразования, уменьшается растворимость эттрингита, что, соответственно, увеличивает его долю в кристаллической фазе. С другой стороны, присутствие катионактивных ПАВ приводит к накоплению избыточного количества ионов ОН-, являющихся активаторами жидкой фазы, т.е. ускорителями гидратации [2]. Классификация интенсификаторов помола представлена в табл. 1.

Таблица 1. Классификация интенсификаторов помола

Набор прочности бетона — температура, влажность, гидратация

Возведение конструкций различной конфигурации и назначения предполагает заливку фундамента. Поэтому многие строители, преимущественно начинающие, интересуются тем, каково же время набора прочности бетона. Сразу стоит отметить, что этот процесс зависит от многочисленных моментов, среди которых не только условия окружающей среды, но и составляющие самого раствора, используемого для заливки фундамента.

В этой статье мы попробуем разобраться, как набирает прочность бетон и есть ли методы ускорения этого процесса.

В чем суть процесса?

Условно, он делится на 2 этапа:

  1. Схватывание. Этот этап происходит в течение первых 24 часов после замешивания основы. Время схватываемости раствора зависит от показателей температуры в помещении или на улице. И если обеспечить должные условия, то можно ускорить схватывание бетонной массы.
  2. Твердение. Как только основа схватится, то наступает затвердение. Как ни странно, но затвердевание фундамента продолжается в течении 12-24 месяцев. При этом заявленные производителем значения, при обеспечении благоприятных условий, определяется на 28 день после заливки.

Интересно, что во многих источниках можно найти, от чего зависит кинетика набора прочности – температур, время. влажность, качество ингредиентов. Но мало где найдешь ответ на вопрос, за счет чего бетон набирает прочность? Это происходит в процессе гидратации цемента.

В сухом материале присутствуют 4 основных элемента:

  • аллит;
  • белит;
  • трехкальциевый алюминат;
  • четырехкальциевый аллюмоферрит.

Первым при замесе в реакцию вступает аллит, но это самый хрупкий минерал. Далее идут алюминаты и алюмоферриты. Последним в реакцию вступает белит, он же и дает необходимую прочность. При этом он гидратируется постепенно, ежегодно набирая нужные параметры. Даже спустя 50 лет процесс гидратации идет, соответственно, все это время бетон продолжает набирать прочность.

Процесс гидратации цемента начинается с момента смешения с водой и продолжается в течение долгого времени

Что же касается именно бетона, то его параметры зависят от степени гидратации цемента. Если речь идет о низкой степени, то спустя 4 недели она достигнет искомых 90%. В высокопрочном составе через это же время будет только половина (до 49%), и в дальнейшем с течением времени она будет только нарастать. В среднем за 3-5 лет прирост составляет порядка 60%.

Читайте так же:
Анкерный штифт с фиксацией цемент

Что влияет на вызревание фундамента

Как было сказано ранее, на то, сколько бетон набирает прочность, влияет целый ряд нюансов, к основным из которых относится:

  • температурные условия окружающей среды;
  • уровень влажности в месте, где производится заливка основы;
  • марка цемента;
  • время.
Температурные условия

Набор прочности бетона в зависимости от температуры окружающей среды, это актуальный вопрос для большинства людей, которые собственными силами занимаются заливкой фундамента. Тут стоит запомнить одно главное правило: чем холоднее на улице или в помещении, где проводится бетонирование поверхности, тем больше время твердения.

Скорость набора прочности бетона в зависимости от температуры

При температуре ниже 0°С укрепление основы приостанавливается и, как следствие, срок набора прочности увеличивается на неопределенное время. Порой достижение заявленных производителем прочностных характеристик происходит спустя несколько лет. Это когда процесс происходит в северных регионах. Такое явление обусловлено тем, что вода, имеющаяся в цементной массе, замерзает. А поскольку за счет влаги обеспечивается необходимая для процесса гидратация, то и затвердевание, так сказать, «замораживается».

Но как только на улице начнет теплеть и станет выше нулевой отметки, твердение продолжится. И так далее. Так выглядит набор прочности бетона в зависимости от температуры.

Теплые погодные условия «активизируют» и ускоряют твердение цементной основы. Скорость твердения бетона в зависимости от температуры прямо пропорциональна увеличению показателей окружающей среды. Так, при 40°С заявленные производителем показатели достигаются через 7-8 дней. Именно по этой причине многие опытные специалисты рекомендуют проводить заливку бетонного фундамента на приусадебном участке в жаркую погоду, за счет чего требуется гораздо меньше времени на организацию всего строительного процесса в целом, нежели в случае с заливкой фундамента в более холодную погоду.

Зимой, как только температура опускается до отметки 0 градусов, процесс гидратации полностью прекращается

Но даже в этом случае не стоит «пережаривать» бетон – пока нижние слои схватятся, верхние начнут трескаться. Это не добавляет ни эстетики, ни твердости. При проведении работ в жаркое время поверхность 2-3 раза в день обильно поливают водой и накрывают целлофаном.

За сколько бетон набирает прочность в зимнее время года? По сути, возведение фундамента зимой – это трудоемкий процесс, который требует использования специального оборудования для регулярного прогрева цементной массы с целью ускорения процесса его затвердевания.

При работе с бетонной массой с целью ускорения ее затвердевания нагрев свыше 90°С недопустим. Это может привести к растрескиванию будущей поверхности.

Для того, чтобы понять каким образом температура влияет на процесс затвердевания, можно изучить график набора прочности бетона. Это позволит визуально разобраться в данном явлении. График набора состоит из линий, которые выстроены на основании данных, собранных для цемента М400 при разном режиме.

График твердения бетона позволяет определить, какое процентное соотношение от марочных показателей будет достигнуто через некоторый временной промежуток. Проще говоря, по этим линиям можно узнать, сколько дней масса набирает марочное значение твердости при той или иной температуре.

График набора прочности по марке цемента

Время

С целью определения оптимального, можно даже сказать, безопасного срока начала проведения строительных работ зачастую берется во внимание таблица набора прочности. По ней можно с легкостью определить за какое время застынет фундамент, приготовленной из той или иной марки цемента. Поэтому опытные специалисты всегда и пользуются подобными информационными таблицами.

Марка цемента

Среднесуточная t цементной основы, °С

Срок затвердевания по суткам

10 мифов при работе с бетоном

Разрушаем мифы вместе с профессиональными бетонщиками

Мифы и заблуждения широко распространены в бизнесе связанным с бетоном. Появившись однажды, миф начинает жить своей жизнью, в него верят и повторяют. В этой статье, мы разоблачим наиболее популярные заблуждения которые правят в мире бетонного строительства.

Миф №1:
Добавление воды в бетонную смесь ведет к увеличению осадки.
На самом деле:
Есть другие не менее эффективные способы увеличить осадку бетона помимо добавления воды.

Добавление чрезмерного количества воды прямо на стройплощадке увеличивает осадку бетона, но также значительно снижает прочность бетонной конструкции. Добавленная вода разбавляет бетонную смесь и увеличивает соотношение воды к вяжущим материалам. Слишком большое количество воды также снижает сопротивляемость бетона к циклам замораживания и оттаивания, увеличивает осадку при высыхании, а также приводит к проблемам в обслуживании здания в дальнейшем.
Удобоукладываемость бетонной смеси (ГОСТ 7473-94) и других строительных растворов является одним из их важнейших качеств. Увеличение расхода воды не выход, потому что при этом уменьшается прочность цемента. Увеличение расхода цемента в бетоне с постоянным содержанием воды не влияет на удобоукладываемость бетона. Играет роль соотношение цементного теста и заполнителя, при увеличении количества цементной смеси, бетон становится более удобоукладываемым, при этом прочность бетона остается неизменной.
Во многих технических требованиях запрещается добавление воды в бетон на стройплощадке. Тем не менее, существуют и другие способы повышения осадки и удобоукладываемости бетона. Качество заполнителей (щебень и гравий), их максимальный размер влияют на расход цемента и воды, влияет на процесс перемешивания. Уменьшение количества воды и пластификаторы, также могут быть использованы для увеличения осадки при сохранении соотношения воды к цементу, а объем вовлеченного воздуха влияет на технологичность бетона. Добавление воды, которая содержит химические добавки, может изменить качество смеси и стать причиной потери подвижности бетонной смеси и состава воздуха внутри бетона.

Миф №2:
Определение марки бетона по количеству мешков с цементом
На самом деле:
Пропорции смеси определяются согласно техническим требованиям, а не количеством цемента

“Сколько надо мешков цемента на куб бетона?” — один из самых популярных вопросов к специалистам по бетонированию. Однако, качество не измеряется в количестве мешков. Как правило, цемент доставляется на стройку в 50-ти килограммовых мешках, и иногда не соответствует нужному стандарту. Пропорции цемента в смеси зависят от того что вы строите. Для разумного расхода цемента, чтобы избежать потери подвижности смеси, усадки, а также соблюдения температурного режима, следует избегать излишков цемента. В технических условиях, часто указывают минимальное количество цемента чтобы увеличить долговечность бетона, пригодность свежеуложенного бетона к отделке, улучшение износостойкости и внешнего вида поверхности. Самая важная часть в подборе пропорций бетона — это соотношение воды к заполнителям и связующим.

Читайте так же:
Чем очистить лобовое стекло от цемента

Миф №3:
Бетон водонепроницаемый
На самом деле:
Даже самый прочный бетон имеет пористую структуру.

Вода и другие вещества в жидком или парообразном состоянии могут проходить через бетон. В зависимости от пористости бетона, этот процесс может достигать от нескольких минут до нескольких месяцев. Чтобы увеличить водонепроницаемость бетона в него добавляют уплотняющие химические добавки, такие как пастеризаторы, гидрофобный цемент, а также дополнительные цементирующие добавки такие как кремнезем и золу уноса. Также, можно обработать поверхность бетона герметическими материалами.

Миф №4:
Чем тверже бетон, тем он долговечнее
На самом деле:
Не только показатель прочности при сжатии определяет долговечность бетона.

Хотя предел прочности при сжатии является важной характеристикой бетона, другие качества могут еще больше влиять на долговечность бетона в жестких условиях окружающей среды. В целом, основные причины “старения” бетона это:

  • коррозия арматуры
  • незащищенность от воздействия циклов замерзания-оттаивания
  • щелочно-окислительные реакции
  • низкая сульфатостойкость

Снижение проницаемости бетона — ключ к его долговечности.

Миф №5:
“Добавим хлорид кальция — чтобы вода не замерзла”
На самом деле:
Хлорид кальция является ускорителем затвердевания бетона, а не антифризом.

Присутствии хлорида кальция, в начальной стадии приготовления бетонной смеси, увеличивает скорость схватывания (гидратации) в полтора-два раза. Однако, свежий бетон нуждается в защите от замерзания пока не достигнет минимальной прочности. Без такой защиты, бетон промерзнет и потом будет менее прочным. Чтобы избежать проблем при заливке бетона в холодную погоду, убедитесь что температура бетона поддерживается в нужных пределах.

Миф №6:
Можно заливать бетон прямо на мерзлую землю без каких-либо мер предосторожности.
На самом деле:
Необходимо заранее принять меры по защите бетона и предотвратить возможные проблемы с грунтом из-за неблагоприятных погодных условий

Бетон залитый в промерзшую почву может осесть неравномерно при оттаивании, что приведет к трещинам. Разница температур между бетоном и грунтом также может стать причиной слишком быстрого охлаждения бетона и замедлить скорость затвердевания. В идеале, температура грунта должна быть такой же как и у бетонной смеси в момент заливки. Есть несколько способов растопить землю перед заливкой бетона, включая защитное покрытие для выдерживания бетона и системы отопления.

Миф 7:
Если поверхность бетона сухая и проверка на влажность прошла успешно, то можно начинать отделочные работы.
На самом деле:
Это не главное правило для начала отделки поверхности.

Неправильная отделка может привести к дефектам поверхности, таким как
— вздутие
— пыление бетонных поверхностей
— трещины
— отслаивание
Нужен большой опыт чтобы точно знать когда можно приступать к отделочным работам. Конечно для определения, можно применить самый простой метод — прикрепить к бетону полиэтиленовую пленку и посмотреть будет ли под пленкой конденсат. Погода, тип конструкции и еще много чего влияет на высыхание бетона. Чтобы точно определить нужное время для отделки, лучше использовать профессиональные влагомеры, которые с учетом многих факторов, измерять влажность на достаточной глубине и в разных местах поверхности. Опытные отделочники всегда обращают внимание на эти факторы.

Миф №8:
У бетона с гладкой и ровной поверхностью, отделка тоже будет гладкой и ровной.
На самом деле:
Бетон изменяет свой объем после осадки, отвердения и просушки.

Деформация кромки бетонной плиты происходит в результате накопления влаги и разной температуры в верхней и нижней части. Бетон уменьшается в размерах если твердение происходит в обычной воздушной среде, и твердеет с набуханием во влажной среде. Также, деформацию могут вызвать силовые нагрузки. Предотвратить деформацию бетона можно с помощью технологий просушки бетона.

Миф №9:
Армированный бетон не трескается
На самом деле:
Армирование бетона не предотвращает появление трещин из-за изменения объема

Бетон, у которого увеличение объема сдерживается конструкционными особенностями, может растрескиваться, поскольку сжимающие напряжения приводят к образованию микротрещин. Часто бывает так что арматура становиться причиной трещин. Структурные усиления не противодействуют возникновению трещин, но сдерживают их расширение и границы разлома. Когда начинается разрушение бетона, деформации сжатия передаются стальным элементам конструкции, что позволяет железобетону выдерживать более высокие нагрузки чем монолитному бетону.

Миф №10:
Под твердением бетона понимается его просушка.
На самом деле:
Бетону нужна вода, так он становится более твердым.

Бетон не твердеет от высыхания. Пока сохраняются благоприятные условия по влажности и температуре, гидратация бетона будет продолжаться. Когда только что залитый бетон начинает высыхать (обычно это момент когда остается 80% от первоначальной влажности смеси), процесс гидратации останавливается. Если температура недавно залитого бетона приближается к замерзанию (5 градусов), то процесс гидратации значительно замедляется. Необходимо выдерживать правильный уровень влажности и температуру сразу после заливки для нормального затвердевания бетона. Если с самого будет соблюдаться процесс затвердевания, то потом у нас будет хороший твердый бетон.

За счет чего цемент твердеет

Гидравлический цемент — это современное изобретение, которое химически реагирует с водой. Благодаря своим уникальным свойствам, он широко используется для всех видов строительства. В этой статье, мы расскажем, что такое гидравлический цемент, его свойства и чем он отличается от не гидравлических вариантов.

Очень важно, чтобы вы полностью подготовили помещение и все свои инструменты перед тем, как смешаете воду и этот цемент. Потому, что гидравлический цемент начинает затвердевать менее чем за две минуты.

Гидравлический цемент представляет собой строительный продукт, который в основном используется для закрытия трещин и протечек в бетонных конструкциях, особенно тех, что с возрастом ослабевают, или структуры, которые могут быть затронуты водой. Особенностью этого цемента является то, что устанавливает и затвердевает он очень быстро после того, как вступает в контакт с водой. Большинство строительных проектов в современном мире используют гидравлический цемент, потому что он прочный, застывает очень быстро, довольно дешевый, легкий для использования, будет оставаться прочным, даже когда помещен в воде, помимо многих других преимуществ.

Гидравлический и негидравлический цемент

  • Гидравлический цемент твердеет за счет гидратации, то есть, воздействие воды, в то время как негидравлический цемент твердеет за счет карбонизации, т. е. воздействие диоксида углерода в воздухе. Поэтому гидравлические цементы могут быть использованы под водой, а не гидравлический, не может.
  • Гидравлический цемент изготавливается из известняка, гипса и глины, которую обжигают при высокой температуре. Негидравлические цементы — делают из извести, гипса, и хлорокиси.
  • Гидравлический цемент высыхает и твердеет в течение нескольких минут, а затвердение не гидравлического цемента, может занять месяц или больше, чтобы достичь пригодных условий.
Читайте так же:
Что означает цемент с латинского

Виды и использование гидравлического цемента

Различные виды гидравлических цементов были созданы для конкретных целей. Они заключаются в следующем:

  • Гидравлический цемент общего-использования: цемент общего назначения используется для ремонта полов, тротуаров, зданий, мостов, трубопроводов и др. где он хорошо работает как стопор утечки.
  • Белый гидравлический цемент: единственная разница между этим цементом и цементом общего использования — это цвет. Он производится с использованием минимального количества железа и магния, что придает ему белый цвет. Он в основном используется в архитектуре, где белый цвет будет хорошо смотреться в декоративных целях.
  • Умеренно сульфатостойкий гидравлический цемент: когда вода или влажная почва соприкасается с бетоном, сульфаты могут химически реагировать в результате масштабирования крекинга и расширения, которое разрушает структуру. Этот цемент используется в таких конструкциях, в связи с его частичной устойчивостью к сульфатам, которые он получает за счет хлоридов, которые смешиваются с сырьем. По этой причине, он в основном используется в конструкциях, которые подвергаются воздействию морской воды.
  • Высоко сульфатостойкий гидравлический цемент: этот цемент используется в бетонных конструкциях, которые сталкиваются с большим количеством сульфатов на регулярной основе. Он использует низкое водоцементное соотношение, и, следовательно, теряет прочность намного медленнее, чем гидравлический цемент общего-использования. Она также обладает высокой устойчивостью к коррозионным веществам, таким как кислоты.
  • Умеренно теплостойкий гидратационный гидравлический цемент: в то время как гидравлический цемент общего-использования выделяет много тепла при реакции с водой, этот вариант специально разработан, чтобы выдавать меньше тепла. Такой цемент широко используется в конструкциях с огромной массой, таких как причалы, фундаменты зданий, и большие подпорные стенки. Этот цемент снизит температуру, что делает структуру более прочной.
  • Низко теплостойкий гидратационный гидравлический цемент: этот цемент набирает прочность гораздо медленнее, чем другие типы, потому что он выделяет очень мало тепла после смешивания с водой. Он используется только в крупнейших структурах, таких как дамбы, где необходима минимизация нагрева. Этот тип доступен только в больших количествах по требованию.
  • Высоко быстро прочный гидравлический цемент: этот цемент набирает полную прочность очень быстро (примерно за неделю). Весьма похож на цемент общего назначения, где основная разница заключается в том, быстротвердеющий цемент имеет очень мелкий помол. Он используется в местах, где структура должна быть использована немедленно.

Как применять гидравлический цемент

  • Гидравлический цемент наносится на поверхности, которые были тщательно очищены. Не должно быть никаких следов жира, масла, грязи или других загрязнений.
  • Настоятельно рекомендуется использовать гидравлический раствор на цементной основе под керамическую облицовку в тех местах, где цемент будет использоваться.
  • Гидравлический цемент должен быть смешан в машине с лопастями, вращения, чтобы получить равномерную смесь.
  • Смешивайте только небольшое количество за один раз, и следуйте инструкциям производителя, чтобы получить лучшие результаты.
  • Необходимо быстро использовать цемент, так как он остается в работоспособном состояние всего за 10 — 15 минут.

Испытания плотности гидравлического цемента

Плотность гидравлического цемента может быть определена как отношение веса данного объема цемента и весом равным объемом воды. Эта плотность отвечает за его качество и его долговечность. Для проверки плотности, вам потребуется фляга, вода, лоток, и баланс.

Процедура:

  1. Проверьте, чтобы термос полностью высох, а затем заполнить его керосином на уровень между 0 и 1 мл.
  2. Теперь, снова тщательно высушите колбу.
  3. Поместите колбу в водяную баню при комнатной температуре в течение 10 до 15 минут.
  4. Очень осторожно налейте гидравлический цемент в колбу. Смотрите, чтобы не было брызг. Кроме того, будьте осторожны, чтобы цемент не прилипал к фляжке выше уровня керосина.
  5. Аккуратно поверните колбу в наклонном положении, пока пузырьки воздуха не выделятся.
  6. Поместите колбу в очередной раз в ванну с водой, подождите некоторое время, и обратите внимание на новый уровень.
  7. Разница между 2 показаниями показывает объем керосина, вытесненный цементом. Формула расчета плотности — масса цемента в граммах ÷ объем смещения в см3. Показания должны быть приняты до второго места после запятой.
  8. Повторите тест еще раз с нуля, и в среднем от 2 показания плотности. Разница не должна быть более 0,03. Если Вы не получите этот результат, цемент не может считаться нормальной консистенции.

Испытания на прочность при сжатии

Проверку гидравлического цемента на прочность при сжатии важно увидеть, так как цемент увеличивает прочность в течение определенного периода времени после того, как он устанавливает. Оборудование, которое вам потребуется для этого теста это куб (70.6 мм3), вибрационная машина, баланс, мастерка, штанга, эмалированный лоток, и мерный цилиндр 200 мл.

Процедура:

  1. Смешайте 200 г гидравлического цемента с 600 г стандартного песка.
  2. Добавьте воду в смесь, чтобы создать пасту и перемешивайте в течение 3 — 4 минут. Смотрите, чтобы вы получили правильный цвет мокрого бетона, если вы этого не сделаете, вылейте смесь и начните все сначала.
  3. Устраните плесень на вибрирующей машине с хомутами.
  4. Залейте форму цементной смесью, а вибрируйте ее со скоростью около 12000 за 2 минуты.
  5. Дайте смеси отстояться в течение 24 часов в месте, с влажностью 90% и температурой около 26 градусов по Цельсию.
  6. После того, как цементный куб полностью отстоится, выньте его из формы и положите в чистую воду.
  7. Аналогичным образом создайте еще 5 кубов цемента.
  8. Поместите один кубик для испытания в машину для сжатия, и примените нагрузку 35/Н/мм2/мин.
  9. Рассчитайте мощность по формуле — Максимальная нагрузка, приложенная на Кубе в Ньютонах ÷ площадь сечения Куба в мм.
  10. Важно, чтобы вы сразу протестировали кубики после забора их из воды, не позволяя им высохнуть в течение испытания.

Кроме того, важно, носить полный комплект защитной одежды, наряду с перчатками и маской при использовании гидравлического цемента, чтобы предотвратить любую опасность для здоровья. Надо сказать, что использование этого продукта довольно простое, а на поверку оказывается благом для профессиональных строителей и владельцев домов по всему миру.

  • Назад
  • Вперёд

Вы должны быть зарегистрированы чтобы оставлять комментарии

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector