Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Время твердения стеклоиономерного цемента

стеклоиoномерный цемент с добавлением наночастиц кремния

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано для фиксации несъемных зубных протезов. Предложена модификация стеклоиономерного цемента для фиксации несъемных зубных протезов, состоящего из порошка и жидкости, путем добавления в порошок наночастиц кремния в соотношении, мас.%: 0,015-0,025%. Модификация позволяет повысить адгезионную способность стеклоиономерного цемента, увеличить прочность, устойчивость к воздействию ротовой жидкости, уменьшить толщину пленки до 10-15 мкм, что, в целом, существенно улучшает качество фиксации несъемных конструкций зубных протезов. 1 табл.

Формула изобретения

Стеклоиономерный цемент для фиксации несъемных зубных протезов, состоящий из порошка и жидкости, отличающийся тем, что порошок содержит наночастицы кремния в соотношении, мас.%: 0,015-0,025%.

Описание изобретения к патенту

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано для фиксации несъемных зубных протезов.

Эффективность ортопедического лечения больных с использованием несъемных конструкций зубных протезов зависит от выбора фиксирующего материала и качественной фиксации их на опорных зубах.

К фиксирующим цементам, кроме общих для всех медицинских материалов предъявляют следующие специфические требования. Эти материалы не должны оказывать токсического действия на пульпу, напротив, оказывая противовоспалительное действие и стимулируя дентиногенез. Кроме того, они обязаны быть хорошими изоляторами для пульпы от термических, химических и биологических раздражителей. По роду применения эти материалы должны обладать высокой прочностью на сдвиг, растяжение и сжатие [1].

Нарушение фиксации несъемных конструкций зубных протезов может быть обусловлено недостатками физико-механических свойств фиксирующих стеклоиономерных материалов в комбинации с микробным фактором. Растворение же цементов приводит к появлению краевой проницаемости под протезом и проникновению бактерий.

В последние годы существенно расширилась область применения стеклоиономерных цементов, они относятся к группе наиболее широко используемых пломбировочных материалов, широко используются также в детской стоматологии и в ортопедической стоматологии для фиксации несъемных конструкций зубных протезов, так как обладают более высокими физико-химическими показателями по сравнению с другими цементами.

Однако стеклоиономерные цементы также обладают рядом недостатков, которые могут снизить качество фиксации несъемных конструкций зубных протезов: непостоянные адгезивные свойства, длительное время окончательного отвердевания при относительно коротком рабочем времени.

Кроме того, известно, что стеклоиономерные цементы не устойчивы к воздействию кислот, а перепад рН ротовой жидкости имеет место у пациентов с заболеваниями желудочно-кишечного тракта. Это может быть дополнительным негативным фактором воздействия ротовой жидкости на прочность фиксирующих материалов [3].

В практике ортопедической стоматологии для фиксации несъемных конструкций зубных протезов необходим стеклоиономерный цемент, который будет максимально отвечать всем требованиям, предъявляемым к фиксирующим материалам: высокая прочность, незначительная хрупкость, устойчивость к воздействию агрессивной среды полости рта, малая толщина пленки, отсутствие гиперчувствительности к составляющим цемента тканей опорных зубов.

Близок по составу к предлагаемому материалу является «Стион» для пломбирования зубов и фиксации несъемных ортопедических конструкций (производства «Радуга Р», Россия, ТУ 9391-009-10611791-97), представляющий собой фторалюмосиликатное стекло и водный раствор полиакриловой кислоты, однако недостатком данного фиксирующего материала является недостаточная адгезия к твердым тканям зубов, значительная толщина пленки.

Известен стеклополиалкенатный цемент «Целит Иономер ФХ» (Россия, ТУ 9391-043-10614163-2005) рентгеноконтрастный фторсодержащий химического отверждения для фиксации ортопедических конструкций, недостатком которого считается короткое рабочее время, значительная толщина пленки (более 30 мкм).

Фирмой Fuji (GC Corporation № ФС3 2009/05239) были созданы марки стеклополиалкенатного цемента, предназначенные для пломбирования зубов и фиксации несъемных зубных протезов, за ними последовали цемента Everbond (Kerr), Ketac Cem (3M Espe), обладающие высокими физико-механическими показателями, биологической совместимостью с твердыми тканями зуба, оптимальным рабочим временем. Такие материалы позволяют избежать ряд осложнений при лечении твердых тканей зуба и фиксации несъемных конструкций зубных протезов, во многом облегчить работу врача-стоматолога, однако довольно высокая цена таких зарубежных материалов не позволяет использовать их в практической деятельности достаточно широко.

Известен серебросодержащий стеклоиономерный цемент Ketac-Silver (Германия) [4] для пломбирования зубов и фиксации несъемных ортопедических конструкций. Введение частиц серебра повышает прочность на сжатие, обеспечивает рентгеноконтрастность, улучшает бактерицидные свойства материала. Недостатки: при добавлении серебра в составе цемента уменьшается количество фторалюмосиликатного стекла и соответственно снижается прочность на диаметральное растяжение, что объясняет хрупкость материала.

Цель изобретения: разработка рецептуры на основе стеклоиономерного фиксирующего материала для фиксации несъемных конструкций зубных протезов, отвечающей следующим требованиям: высокая прочность при сжатии и диаметральном растяжении, высокая адгезионная способность, устойчивость к воздействию ротовой жидкости, малая толщина пленки, не превышающая 10-15 мкм, что выше показателей ГОСТа Р 51744-2001, отсутствие токсического воздействия на пульпу зуба.

Техническим результат достигается путем добавления в порошок фиксирующего материала, например, «Стион» (Россия «Радуга Р», г.Воронеж, ТУ 9391-009-10611791-97), «Целит Иономер ФХ» (Россия, ТУ 9391-043-10614163-2005), «Цемион Ф» (Россия, «Владмива», г.Белгород, ТУ 939101445814830-2000), «Глассин фикс» (Россия, «Омега Дент», г.Москва), «Кетак нем» № 56900 (3М ESPE, США) наночастиц кремния.

Жидкость затворения содержит в процентах по массе два основных компонента: около 45-55% полиакриловая кислота, вода около 40-50%, модифицирующие добавки, в качестве которых могут выступать различные кислоты, например итаконовая, малеиновая, винная — согласно заявленному производителем составу.

При замешивании материалов с предложенными добавками в ходе химической реакции наночастиц кремния с водным раствором полиакриловой кислоты образуется большое количество связанной воды. Вода является необходимым компонентом стеклоиономерного цемента, играющим важную роль в процессе его отвердевания. После реакции затвердевания исследуемого материала с добавлением наночастиц кремния происходит повышение прочности при сжатии, диаметральном растяжении, повышение адгезионных свойств, уменьшение толщины пленки.

Технология приготовления стеклоиономерных цементов с предложенной добавкой не отличается от стандартной. Непосредственно перед применением замешивают фиксирующий материал. При ручном замешивании необходимо строгое соотношение порошка и жидкости (1,5:1), и в течение 30 секунд проводят замешивание до гомогенной консистенции.

Экспериментальные исследования были проведены согласно ГОСТу Р 51744-2001 на адгезионную способность, прочность на сжатие, время твердения, устойчивость к растворению и исследование толщины пленки. Сравнительные показатели представлены в таблице.

Предварительные биологические испытания не выявили повышения токсичности за счет добавления заявленных количеств наночастиц кремния.

Сравнительная характеристика физико-механических свойств исследованных составов стеклоиономерных цементов
ХарактеристикиМатериал по изобретению (добавлен нанокремний в % по массе)Аналоги — стеклоиономерные цементы
0,025
Адгезионная способность (кг/см 2 )2-78-103-52-7
Толщина пленки (мкм)258-1520-2222-24
Прочность на сжатие (МПа)80-100110-14070-9090-120
Время твердения (мин)3-55-82-34-3
Устойчивость к растворению (мм/ч)0,8-10,40.5-10,8-1,5
Цветсветло-желтыйсветло-желтыйтемно-коричневыйсветло-желтый, белый
Читайте так же:
Цемент д0 д20 различия

При проведении испытаний для определения оптимальной концентрации нанокремния при приготовлении композиции фиксирующего материала добавляли к порошкам фиксирующих материалов менее 0,015% наночастиц кремния к массе. При такой концентрации наночастиц кремния улучшений физико-механических свойств стеклоиономерного фиксирующих материалов не выявили.

При добавлении к порошку стеклоиономерного фиксирующего материала наночастиц кремния в количестве 0,015-0,025% по массе получили улучшение показателей физико-механических свойств материалов.

При увеличении концентрацию наночастиц кремния более 0,025% к массе порошка различных образцов стеклоиономерного цемента установили существенное изменение цвета, вплоть до черного, повышение хрупкости и рабочего времени отвердения используемого материала, ниже в сравнении с требованиями ГОСТа в 1,5 раза.

Таким образом установили, что при добавлении наночастиц кремния в количестве 0,015-0,025% к массе порошка стеклоиономерного цемента исследованных марок наблюдается положительный эффект со стороны физико-механических свойств фиксирующего материала.

Использование именно частиц нанокремния, а не ионной или другой формы вещества подтверждено технологией его получения, а именно нанокремний получен путем электрохимического травления кристаллического кремния с последующей его ультразвуковой обработкой. Инфракрасная спектрография позволила установить, что пик регистрировался в области 600-620 см -1 , что соответствует кремнию в наноформе.

Размер частиц составляет 50-200 нм, что подтверждено электронной микроскопией.

Предложенный нами состав фиксирующего материала с добавлением наночастиц кремния в соотношении 0,015-0,025 к массе позволяет: повысить адгезионную способность, увеличить прочность, устойчивость к воздействию ротовой жидкости, уменьшить толщину пленки до 10-15 мкм, что, в целом, существенно улучшает качество фиксации несъемных конструкций зубных протезов.

1. Трезубов В.Н. Ортопедическая стоматология: Прикладное материаловедение. / В.Н.Трезубов, М.З.Штейнгарт, Л.М. Мишнев / СПб., 2003 г. — 208-224 с.

2. Биденко Н. В. Стеклоиономерные материалы и их применение в стоматологии. — М., 2003.

3. Безвестный Г.Р., Абдулов И.И., Розов Ю.В. // Стоматология. — 1992. — № 2. — С.91-93.

4. Simmons J.J Silver-alloy powder and glass ionomer cement // J. Am. Dent. Assos. — 1990. — V.120. P.49.

Время твердения стеклоиономерного цемента

Значительная группа пломбировочных материалов в стоматологии представлена стеклоиономерными цементами [1,2]. Стеклоиономерный цемент (СИЦ) материал на основе полиакриловой кислоты и измельченного кальций-фтор-алюмосиликатного стекла. Впервые был создан английскими учёными Вильсоном и Кентом в 1969 году и выпущен в продажу фирмой De Trey.

Стеклоиономерные цементы были разработаны на основе поликарбоксилатных при замене порошка на основе оксида цинка на тонко измельченное фторсиликатное стекло. Эти цементы имеют в своем составе алюмосиликатное стекло, которое способно к выщелачиванию ионов фтора. Отверждение цемента происходит на основе кислотно-основной реакции между основным стеклом и кислотным компонентом. СИЦ также оказывают противокариозное действие, которое объясняется диффузионным выщелачиванием из стекла цемента фтора и удержанием его эмалью [3,4].

Цель: по литературным данным изучить состав и свойства стеклоиономерных цементов.

Важной особенностью стеклоиономерных цементов является обширное варьирование свойств материала, достигающееся значительным числом комбинаций стекла в соединении с множественной комбинацией кополимеризующих поликислот.

Стеклоиономерные цементы состоят из порошка и жидкости. Порошок это тонко измельченное кальций — фторалюмосиликатное стекло с высоким количеством кальция, фтора и малым количеством натрия и фосфатов. Основными его компонентами являются: диоксид кремния, оксид алюминия и фторид кальция. В небольших количествах в состав цементов входят: фториды и фосфаты натрия и алюминия.

Жидкость стеклоиономерного цемента — водный раствор сополимера акриловой и итаконовой или акриловой и малеиновой кислот. Вода при этом является растворителем и необходимым компонентом цементы, который играет важную роль в отверждении цемента.

Примерный состав стандартного СИЦ.

Различают несколько поколений стеклоиономерных цементов:

  1. Традиционные СИЦ — двухкомпонентные. Порошок и водный раствор полиакриловой кислоты.
  2. Водозамешиваемые СИЦ. Все активные компоненты находятся в порошке. Представители Aqua Ionofil (Voco), ChemFil Superior (Dentsply).
  3. Кермет-цементы (керамика-металл-СИЦ). В частицы стекла вплавлены металлы. Эти цементы содержат в своем составе тонкодисперсное золото или серебро, что позволило добиться снижения хрупкости и податливости СИЦ, уменьшилась пористость, улучшилась износостойкость. Реакция отверждения протекает быстрее, снижено влагопоглощение. Представители Ketak Silver (3M ESPE), Argion (VOCO).
  4. СИЦ с двойным механизмом отверждения. Полимеризация с образованием поперечной сшивки полимерной цепочки происходит за 30–60 секунд, затем включается более продолжительная реакция хелатообразования. Представители Photac-Fil (3M ESPE), Aqua Cenit (VOCO), Fuji II LC (GC).
  5. СИЦ с тройным механизмом отверждения. В процессе отверждения проходят следующие стадии: I — быстрая полимеризация под действием света; II —химически активизируемая полимеризация III — кислотно-щелочная реакция между компонентами СИЦ. Представители Vitremer, 3M ESPE[1,5,6].

Также выделяют стеклоиономерные цементы:

а) для прокладок (размер частиц 5 мкм), имеют окончание названия на -bond;

б) фиссурные герметики.

Отверждение стеклоиономерных цементов происходит в 3 стадии:

В первой стадии в результате реакции полиакриловой кислоты с поверхностным слоем стеклянных частичек выделяются ионы кальция, фтора, натрия и алюминия. Ионы диффундируют в окружающий водный раствор и оставляют в поверхностном слое силикатный гель. Окончательное выщелачивание завершается через 24 ч.

Гелевая стадия длится около 7 минут. Молекулы поликислот сшиваются ионами кальция, обеспечивая начальное отверждение. Поликислотные молекулы превращаются в гель, pH СИЦ возрастает. Адгезия СИЦ к твердым тканям происходит только после смешивания порошка и жидкости. Начало стадии гелеобразования характеризуется матовой и непрозрачной поверхностью.

Стадия отвердевания (может длиться до 7 дней). Окончательную прочность материала обеспечивают сшивки цепей поликислот анионами алюминия, образующие поперечные связи молекул кислоты. Алюминий обеспечивает более высокую степень поперченного связывания и образования поперечной структуры, чем кальций, так как является трехвалентным[2,7,8].

На этой стадии также происходит окончательное образование силикагеля на поверхности стеклянных частичек, которое влечет за собой выделение воды и пломбировочный материал становится нечувствительным к влаге. Отвердевший цемента представляется собой частички стекла, окруженные силикагелем и находящиеся в матриксе из поперчено связанных поликислот [1,9,10].

Положительные свойства СИЦ:

  • Биологическая совместимость
  • Кариесстатический эффект (выделение ионов фтора)
  • Хорошая адгезия к тканям зуба за счет хелатного соединения карбоксилатных групп полимерной молекулы кислоты с кальцием твердых тканей зуба.
  • Антибактериальное свойство
  • Не требуется абсолютной сухости полости.
  • Антикариозная активность.
  • Высокая прочность на сжатие.
  • Низкая усадка.
Читайте так же:
Изготовление искусственного камня цемента

Антибактериальное свойство СИЦ основано на способности выделяемого фтора блокировать синтез полисахаридов микроорганизмами, препятствовать прикреплению зубной бляшки и образованию молочной кислоты.

Кариесстатический эффект наблюдается в фазе растворения когда образовываются фторсодержащие апатиты между материалом и твердыми тканями. Выделение фтора начинается сразу после процесса замешивания СИЦ, достигает максимального количества через 24–48 часов и выделяется в ткани зуба на глубину до 3 мм около 6 месяцев. Слой дентина, насыщенный фторапатитом повышает кислотоустойчивость эмали и является барьером для образования вторичного кариеса [1,2,11].

  • низкая прочность на растяжение
  • небольшую устойчивость к истиранию
  • невысокую твердость, растворимость в воде
  • незначительная сила сцепления
  • чрезмерная опаковость
  • невозможность полировки пломбы до сухого блеска.

Показаниями к применению СИЦ являются:

  1. Герметизация фиссур.
  2. Пломбирование кариозных полостей в молочных зубах.
  3. Пломбирование кариозных полостей 3 и 5 классов в постоянных зубах
  4. Пломбирование кариозных полостей в пришеечной области
  5. Постановка изолирующей прокладки.
  6. Отсроченное пломбирование
  7. Восстановление культи зуба перед протезированием.
  8. Фиксация штифтово-культевых конструкций, вкладок, коронок и мостовидных протезов.
  9. Пломбирование корневых каналов.

Заключение.

Таким образом, состав и свойства СИЦ предполагают их многостороннее использование в стоматологии — в качестве подкладок под пломбы, при пломбировании кариозных полостей у детей как постоянную пломбу, постоянной фиксации несъемных мостовидных протезов, ортодонтических аппаратов, пломбирование корневых каналов.

Время твердения стеклоиономерного цемента

В течение длительного времени популярными материалами в стоматологии для цементирования несъемных конструкций протезов продолжают оставаться цинк-фосфатные и стеклоиономерные цементы. Кроме них, широкое распространение получили стеклоиономерные цементы модифицированные полимерами, которые сохраняют преимущества традиционных стеклоиономерных цементов, а именно выделение фтора и химическую адгезию с тканями зуба, обладая при этом при этом более высокой прочностью, низкой растворимостью в жидкости и меньшим микроподтеканием [1–5].

Цель: Проанализировать свойства современных стоматологических цементов.

Цинк-фосфатные цементы основаны на реакции взаимодействия порошка оксидов металлов (основной компонент – оксид цинка) и водного раствора фосфорной кислоты, который может содержать ионы металлов. Эти цементы применяют для фиксации зубных протезов и аппаратов, а также для подкладок под пломбы при восстановлении зубов и для временного пломбирования [11–14].

Цинк-фосфатный цемент является старейшим цементом для фиксации. Часто он служит стандартом, с которым сравнивают более новые разработки. Основными причинами широкого использования этих материалов в повседневной клинической практике являются их хорошие манипуляционные свойства, способность фосфатных цементов твердеть в течение короткого времени [6–10].

Отрицательные свойства. Цинк-фосфатный цемент оказывает токсическое воздействие на пульпу зуба. В таких случаях либо используют другой вид цемента, либо на дно вначале кладут гидроксид кальция, и только потом ЦФЦ. Цинк-фосфатный цемент очень чувствителен к влаге, поэтому полость зуба обязательно должна оставаться сухой [15, 16].

Стеклоиономерные цементы представляют собой систему «порошок/жидкость». Состав: порошок – кальций – алюмосиликатное стекло с добавлением фторидов (до 23 %). Жидкость – раствор поликарбоновых кислот: полиакриловой, полиитаконовой и полималеиновой.

Сочетают в себе низкую токсичность, высокую прочность и удовлетворительные эстетические характеристики, а также проявляют противо- кариозную активность. СИЦ могут применяться при наложении как базовых, так и тонкослойных (лайнерных) изолирующих прокладок, постоянных пломб, а также для фиксации несъемных ортопедических конструкций. Отрицательные свойства стеклоиономерного цемента:

1. Окончательное застывание происходит через 24 часа

2. Чувствительность к избытку или недостатку влаги в процессе отверждения

3. Чувствительность к внешним механическим воздействиям в процессе «созревания». Установлено, что механические воздействия, особенно вибрация при обработке борами и абразивными инструментами, может нарушать образование химической связи между цементом и структурами зуба. Это приводит к нарушению герметичности [17–19].

В настоящее время отмечается определенная тенденция к более широкому и активному применению композиционных цементов. Основная причина данной тенденции заключается в том, что цементы этой группы превосходят другие цементы по целому ряду характеристик.

Композитные цементы делятся на 2 большие группы:

1. Композитные цементы с этапом адгезивной подготовки;

2. Композитные цементы без этапа адгезивной подготовки (самоадгезивные).

применение традиционных или классических композитных цементов связано с протравливанием ортофосфорной кислотой и с адгезивной подготовкой поверхности зубов перед их использованием. Этот этап обеспечивает надежную герметичность и изоляцию зубов после цементирования непрямых реставраций. Сложности связанные с необходимостью предварительной адгезивной подготовкой, а именно дополнительные временные затраты, чувствительность к аппликационным ошибкам, случаи возникновения послеоперационной чувствительности ограничивали их более широкое использование в стоматологии [20, 21, 22].

Самоадгезивные композитные цементы появились чуть позже в следствие дальнейших разработок композитных цементов. Эти цементы не требует предварительного протравливания ортофосфорной кислотой твердых тканей зуба. Связь возникает за счет низких значений рН таких цементов сразу после замешивания. По данным исследования, значение рН меняется от 1 до 6 в течение полимеризации. Цемент на начальном этапе деминерализует, а затем проникает в поверхностный слой твердых тканей зуба, соединяясь при этом с тканями зуба. Особенность заключается в том, что смазанный слой на поверхности культи зуба не удаляется, а частично модифицируется. Механизм полностью не изучен, но предполагается, что связь происходит за счет реакции комплексообразования ионов кальция на поверхности дентина зуба и фосфорной кислоты метакрилатов в цементе.

Основные положительные свойства этого цемента это:

2. Низкая растворимость.

3. Прочная связь с тканями зуба и отсутствие микроподтекания.

4. Низкая величина толщины цементной плёнка.

Самоадгезивные композитные цементы (СКЦ) появились позднее всех видов цементов. Ряд научных исследований подтверждают высокую клиническую эффективность данной группы материалов. Первые СКЦ имели ряд недостатков и по многим параметрам уступали аналогичным материалам. Современные СКЦ имеют улучшенные характеристики, что свидетельствует о целесообразности их использования с целью высокой клинической эффективности при протезировании несъемными конструкциями зубных протезов.

В настоящее время один из самых распространенных пломбировочных материалов является filtek z550 от компании 3М ESPE (США), его можно использовать в ежедневной стоматологической практике. Взяв за основу уже зарекомендовавший себя композитный материал Filtek Z250, производители добавили уникальную технологию нанонаполнителя. Получилось значительно улучшить манипуляционные свойства нового композита, его прочностные, а также эстетические характеристики. Работать новым материалом Филтек (Filtek) Z550 легко и удобно, так как он: [23–26].

Читайте так же:
Цементная стяжка при температуре воздуха

— Не липнет к инструментам

— Очень легко адаптируется к стенкам полости

— Легко моделируется вне зависимости от дизайна реставрации

— Держит форму до полимеризации

Наногибридная формула обеспечивает материалу отличные прочностные характеристики и высокую износоустойчивость, поэтому, реставрируя с помощью наногибридного композита Filtek Z550, Вы можете быть уверены в долгосрочном результате. Легко использовать для реставраций по любому классу. Наногибридный композит Filtek Z550 идеально подходит для восстановления зубов боковой и фронтальной групп. Цветовая гамма материала включает 12 самых популярных оттенков, идеально соответствующих шкале Vita. Материал легко полируется, что обеспечивает реставрациям естественную, природную эстетику [27–30].

Временные стоматологические цементы. Временные стоматологические цементы используются, чтобы улучшиться потребительские качества уже постоянного протеза. Он ускоряет адаптацию десны и подготовку к дальнейшему протезированию. При этом снижается риск развития воспалительных процессов под постоянными конструкциями. Так же пациент может определиться с ощущениями. В случае дискомфорта протез легко снимается [31–33].

Однако стоит помнить, что временные цементы не такие прочные как постоянные, Поэтому для того чтобы преждевременно не сорвать временный протез, стоит избегать употребление твердой пищи, жевания на стороне с установленными временными коронками.

Одним из таких материалов является RelyX Temp NE от компании 3М ESPE (США) представляет собой безэвгенольный самополимеризующийся цемент, предназначенный для временной фиксации ортопедических конструкций. Благодаря безэвгенлоьной формуле RelyX Temp NE не влияет на последующую полимеризацию пломбировочных материалов и цементов для фиксации. Предназначен специально для пациентов, плохо переносящих эвгенол.

— Фиксация временных конструкций.

— Временная фиксация коронок, мостовидных протезов, накладок и вкладок.

— Высокая степень адгезии и хорошее качество краевого прилегания

— Минимальный риск возникновения постоперативной чувствительности

— Нет этапа протравливания, прайминга, бондинга

— Толерантность к влаге

— Простота использования и гигиеничность

— Материала в кликере достаточно для фиксации 40 единиц коронок

— Инновационная упаковка «Кликер», форма паста/паста обеспечивает удобство в работе.

Недостатки [34, 35]:

— Паста катализатора содержит вещества, которые при контакте с кожей могут вызывать аллергические различные реакции у некоторых людей

— Вблизи пульпы надо использовать традиционные прокладки для её защиты.

В заключение хотелось бы сказать, что для каждой клинической ситуации нужно использовать определённый вид цемента. При протезировании, коронку лучше сначала зафиксировать на временный цемент, так как в случае дискомфорта, можно будет легко снять конструкцию и отправить в лабораторию на доработку. А при терапевтическом лечение начального и поверхностного кариеса, мы используем постоянные стоматологические цементы. При пломбировании канала мы используем долготвердеющие цементы, которые в дальнейшем можно будет легко извлечь, при дальнейшем перепломбирование.

Стеклоиономерные цементы, свойства, показания к применению, техника замешивания и пломбирования.

Ответ: Порошок представляет собой алюмосиликатное стекло с определенным соотношением алюминия, фтора и кремния.
Жидкость, в зависимости от целей назначения может быть дистиллиро-ванная вода или водный раствор полиакриловой кислоты.
Иономерные цементы бывают химического и светового отверждения.
Иономерные цементы абсолютно безвредны для тканей зуба, не оказы-вают раздражающего действия на пульпу. Обладают высокой адгезией к ден-тину. За счет фтора, содержащегося в составе цемента, обеспечивают про-тпвскарпсвный эффект. Скорость затвердевания составляет 4 мин.
Показания к применению:
1. Пломбирование полостей III-V классов, клиновидных дефектов, эрозий постоянных зубов.
2. Пломбирование полостей всех классов, молочных зубов и профилак-тическое запечатывание фиссур постоянных зубов.
3. В качестве изолирующих прокладок.
4. Создание основы реставрации.
5. Фиксация штифтов.

Амальгама, свойства, показания к применению, техника замешивания и пломбирования.

Амальгама представляет собой сплав металла с ртутью.

Различают медную и серебряную амальгамы.

В настоящее время почти во всех странах применяют серебряную амальгаму со значительным добавлением меди, так называемые высокомедные амальгамы.

Серебряная амальгама состоит из ртути, серебра (66 %), олова (32 %), меди (2 %) и др.

Серебро придает амальгаме твердость, олово замедляет процесс твердения, медь повышает прочность и обеспечивает хорошее прилегание пломбы к краям полости.

Положительные свойства следующие:

2) хорошая пластичность;

3) почти не меняет цвет зуба;

4) не разрушается в полостях, близких к десневому краю.

1) плохая прилипаемость;

2) высокая теплопроводность;

3) изменение объема;

4) наличие микротоков.

Амальгамой пломбируют полости I, II и V классов моляров

При пломбировании амальгамой препарирование полости производят в строгом соответствии с классификацией Блэка.

Отечественная промышленность выпускает в капсулах серебряную амальгаму ФСТ- 43.

Методика приготовления и пломбирования

Замешивание амальгамы проводилось вручную с применением ступки и пестика.

В последние годы наибольшее распространение получил механический способ смешивания амальгамы с помощью различных типов амальгамосмесителей.

Нормальная смесь представляет собой однородную массу без избытка ртути и должна издавать крепитирующий звук.

При пломбировании амальгаму необходимо вводить небольшими порциями.

Уплотнение в полости необходимо начинать с центра, постепенно перемещая по направлению к стенкам полости.

Избыточную ртуть или жидкую амальгаму, которые выходят на поверхность, необходимо удалять.

После этого просят больного сомкнуть зубы.

При наличии отпечатка бугра на пломбе в этом участке амальгаму снимают гладилкой или ватным тампоном.

Через 24 часа или позже пломбу подвергают окончательной шлифовке и полировке.

Пломба считается правильно обработанной, если зондом не ощущается граница между пломбой и зубом.

В качестве заменителей ртутных амальгам в ЦНИИСе была создана галлий-никелевая паста «Галлодент-М».

Материал очень пластичен, быстро твердеет в полости рта (10-15 мин), облада­ет хорошей адгезией, меньше подвержен влиянию влаги.

Амальгаму не следует применять в полостях с тонкими стенками, т.к. она имеет свойство расширяться.

Композиционные материалы. Классификация. Показания к применению.

Классификация КПМ

1. Макронаполненные, или макрофилы – это КПМ с размером частиц 1-100 мк. Эта группа композитов обладает высокой механической прочностью и химической стойкостью, хорошим краевым прилеганием при выраженной токсичности, плохой полируемости и слабой цветоустойчивости.

К ним относятся:

1. Adaptic (фирмы Dentsply).

2. Cjncise (фирмы ЗМ).

3. Evicrol (фирмы Spofa Dental).

4. Эпакрил (ХПО «Стома»).

5. Фолакор-С (ТОО «Радуга России»).

6. Комподент («Краснознаменец»).

Макронаполненные КПМ используются в основном для пломбирования полос­тей I класса Блэка, реже И класса в премолярах и полостей V класса Блэка в жева­тельной группе зубов.

2. Микронаполненные, или микрофилы – это КПМ с размером частил, 0,005-0,05 мк. Пломбы из данных материалов обладают высокими эстетическими свойствами, в совершенстве имитируют ткани зуба, великолепно полируются и длительно сохра­няют свой цвет. В то же время микрофилы обладают недостаточной механической прочностью, что связано с более низким содержанием наполнителя – до 50 % массы и только 25 % объема; они могут быть использованы для пломбирования клиновид­ных дефектов, эрозий эмали, полостей III и V классов Блэка, то есть в местах наи­меньшей жевательной нагрузки.

Читайте так же:
Активность цемента что это такое

1. Isopast (abhvs Vivadent)

2. Deguffill-SC (фирмы Degussa).

3. Degufitl-M (фирмы Degussa).

4. Dura fill (фирмы Kulzer).

5. Helio Procress (фирмы Vivadent).

6. Helio Molar (фирмы Vivadent).

7. Silux Plus (фирмы ЗМ).

3. Гибридные КПМ – это материалы с размером частиц от 0,005 до 100 мк. Гиб­ридные композиты содержат наполнители различного качества и количества, раз­ных размеров. Большинство гибридов содержит 80-85 % наполнителя.

1. Valuxs plus (фирмы ЗМ).

2. Z 100 (фирмы ЗМ).

3. Prizma TPH (фирмы Dentsply).

4. Herculite XRV (фирмы Kerr).

5. Degufili-H (фирмы Degussa).

6. Charisma (фирмы Kulzer).

7. Tetric (фирмы Vivadent).

8. Arabesc (фирмы Voco).

Данные композиты считаются универсальными, так как могут использоваться при пломбировании кариозных полостей I, II. III, IV, V классов Блэка, эрозий эмали, клиновидных дефектов, а также для полной реставрации корешковой части зуба, об­лицовывания дисколоритных зубов. Пломбы из данных материалов обладают: мак­симальной механической прочностью и химической стойкостью, высокой эстетич­ностью и цветоустойчивостью, минимальной усадкой и максимальной адгезией.

4. Компамеры сочетают в себе свойства, гибрида и стеклополимера. Характери­зуются химическими связями с тканями зуба, биологической совместимостью и со­держанием фтора, постепенно поступающего в ткани зуба. Представителем этой группы является дайрект. Предназначен для восстановления дефектов III-V клас­сов, для восстановления придесневой стенки II класса.

В зависимости от типа полимеризации все КПМ подразделяются на 2 группы:

1 -я – КПМ химического способа отверждения;

2-я – КПМ светового отверждения.

Показания к использованию композиционных материалов

1. Пломбирование кариозных полостей всех классов.

2. Восстановление коронки при эрозии твердых тканей, клиновидном дефекте, гипоплазии и аплазии эмали, флтоорозе, травматических поражениях,

3. Устранение деформации зубов фронтального ряда: диастем, трем.

Химия стеклоиономерных цементов

Состав

Стеклоиономерный цемент является весьма привлекательным материалом прежде всего потому, что на его основе имеется возможность получить огромное разнообразие вариантов состава, и этим он принципиально отличается от цинк-фосфатного цемента. Основными компонентами стеклоиономерного цемента являются стекло, поликислота, вода и винная кислота.

Состав стекла можно менять в очень широком диапазоне, придавая ему различные свойства, и дополнительно к этому, есть возможность получать путем сополимеризации большое число комбинаций поликислот. В противоположность этому цинк-фосфатные цементы, оптимизированные по соотношению порошок — жидкость и концентрации фосфорной кислоты, практически не поддаются совершенствованию. Вполне очевидно, что широкие возможности для создания модификаций стеклоиономеров несут в себе как положительные, так и отрицательные моменты и это отразилось в истории развития стеклоиономерных цементов, начиная с 70 —х годов.

Поэтому нельзя было утверждать, что создание стеклоиономерных цементов с самого начала проходило гладко. Доказательством этому может служить тот факт, что предлагаемые сегодня на рынке материалы этого класса принципиально отличаются от тех, которые были предложены в самом начале их клинического применения. Ранние материалы состояли из порошка стекла, к которому добавляли концентрированный раствор полиакриловой кислоты. AS РА (Dentsply De Trey Ltd, Weybridge, Великобритания) — так назывался первый материал, выпущенный в 1976 году.

Стекло

Стекла для стеклоиономерных цементов содержат три основных компонента: оксид кремния (Si02) и оксид алюминия (А1203), которые перемешивали с флюсом фторида кальция (CaF2), как показано на Рис. 2.3.2. Состав стекла в основном ограничен центральной областью фазовой диаграммы потому, что старались получить полупрозрачное стекло.

Рис. 2.3.2. Состав стекла, используемого в стеклоиономерных цементах

Смесь, которая содержит также фториды натрия и алюминия, фосфаты кальция или алюминия как дополнительные флюсы, сплавляется при высокой температуре, и расплавленная масса затем резко охлаждается и измельчается до тонкого порошка. Размер частиц порошка зависит от цели его последующего применения. Для пломбировочных материалов максимальный размер частиц составляет 50 мкм, в то время как для фиксации и прокладок — менее 20 мкм.

Скорость высвобождения ионов из стекла, что является важным фактором в схватывании, растворимости и высвобождении фторида, является функцией конкретного вида стекла. Стекло также играет основную роль в эстетике пломбы, так как она зависит от обоих факторов — коэффициента преломления стекла и присутствия в нем пигментов.

Поликислота

Имеется большой ряд аналогов полиакриловой кислоты, который при сочетании с вариантами моллярной массы и структуры дает возможность создания огромного числа модификаций. В современных композициях наиболее часто используют поликислоты, которые являются сополимерами акриловой и итаконовой кислот или акриловой и малеиновой кислот (Рис. 2.3.3).

Рис. 2.3.3. Кислоты, используемые в составах стеклоиономерных цементов

Относительно новой модификацией является стеклоиономерный цемент, основой которого служит сополимер винилфосфоновой кислоты. Эта кислота на много сильнее других, используемых в производстве стеклоиономерных цементов, поэтому состав цемента на основе этой кислоты тщательно контролируется с целью получения хороших рабочих характеристик; предполагается также , что в этом случае можно получить материал с прочностью, обеспечивающую более высокую долговечность, а также повышенную водостойкость.

Для силикатных цементов существует оптимальная концентрация водного раствора кислоты, но для стеклоиономеров — это не так. Чем более высокие концентрации поликислоты применяются в составе стеклоиономерного цемента, тем выше его прочность и устойчивость к влаге. Ограничивает рост этих показателей консистенция пасты цемента. Вязкость жидкости цемента зависит от концентрации поликислоты и ее молекулярной массы, которая может изменяться от 10 000 до 30 000. Винная кислота является важным компонентом стеклоиономерного цемента, так как она оказывает существенное влияние на рабочее время и время твердения.

Форма выпуска
Порошок-жидкость

Многие стеклоиономерные цементы состоят из порошка стекла, к которому добавляют соответствующую жидкость. Производство порошка описано выше, а жидкость является водным раствором полиакриловой кислоты или полималеиновой и винной кислот. Однако у такой композиции в скором времени был выявлен ряд недостатков, что потребовало внести в нее некоторые изменения.

Читайте так же:
Цементный раствор для минусовых температур

Одним из недостатков была избыточная растворимость стеклоиономерного цемента в слюне, сочетающаяся с его замедленной реакцией схватывания. Не ясен также вопрос оптимального соотношения порошок — жидкость. Некоторые производители снижают содержание порошка цемента, для того чтобы получить гладкую кремоподобную массу, однако это приводит к замедлению схватывания и получению более ослабленного цемента, который в значительной степени подвержен растворению (Рис. 2.3.4).

Рис. 2.3.4. Влияние изменений соотношения порошок-жидкость на свойства стеклоиономерных цементов

Безводные цементы

Сегодня многие стеклоиономерные цементы отверждаются после добавления в порошок необходимого количества дистиллированной воды. Стеклянный порошок содержит добавки высушенной при замораживании поликислоты и порошка винной кислоты. Первый продукт, изготовленный по такому методу, появился на рынке в 1981 году. Новые композиции цементов, называемые безводными, содержат порошок и жидкость. Порошок состоит из алюмосиликатного стекла, к которому добавляют поликислоту и винную кислоту в сухом порошкообразном виде, а жидкостью является просто дистиллированная вода.

Капсулы

Общепризнанно, что достижение точного соотношения порошок-жидкость все еще остается сложной задачей. Для получения качественной массы пломбировочного материала требуется энергичное смешивание, для того, чтобы обеспечить полное введение порошка в жидкость. Одним из путей рационального решения этого вопроса является использование предварительно дозированных капсул.

Состав порошка различных капсул не обязательно одинаков, поэтому их содержимое не рекомендуется смешивать между собой. Например, для обеспечения наиболее благоприятных рабочих и физических свойств, пломбировочные материалы имеют большие по размеру частицы стеклянного наполнителя, чем цементы для фиксации протезов. Сходным образом и используемые жидкости могут отличаться по составу для того, чтобы подходить к конкретной составу стекла и придавать цементу нужное рабочее время и время его схватывания. С этим вопросом детально ознакомимся позже, при рассмотрении практического приготовления и использования различных составов цемента.

Клиническое значение

Трудности дозирования и смешивания точного количества порошка и жидкости для стеклоиономерных цементов можно преодолеть путем использования дозированных капсул, с помощью которых можно добиться высокой воспроизводимости результатов работы.

Реакция отверждения

Отверждение стеклоиономерных цементов идет по типу следующей окислительно-восстановительной реакции:

MOSi02 + Н2А МА + Si02 + Н20 стекло кислота соль силикагель

Процесс отверждения включает три протикающие почти одновременно стадии:

• затвердевание или отверждение.

Это происходит из-за различных скоростей, с которыми ионы высвобождаются из стекла, и скорости образования солевой матрицы (Рис. 2.3.5). Как видно из этого графика ионы кальция высвобождаются быстрее, чем ионы алюминия. Это происходит потому, что ионы кальция очень непрочно связаны со структурой стекла, в то время как ионы алюминия образуют часть решетки стекла, которую труднее разрушить. А солевую матрицу как раз и образуют ионы кальция и алюминия. Ионы натрия и фторида не принимают участия в процессе отверждения, но соединяются с образованием несвязанного фторида натрия.

Рис. 2.3.5. Различные скорости высвобождения ионов из стекла

Когда жидкий компонент материала или воду смешивают с порошком, растворенная кислота реагирует с наружным слоем стекла. Этот слой обедняется ионами алюминия, кальция, натрия и фторида, так что остается только гель двуоксида кремния (Рис. 2.3.6).

Рис. 2.3.6. Начальные стадии реакции отверждения стеклоиономерного цемента

Ионы водорода, которые освобождаются из карбоксильных групп по мере диффузии в стекло поликислотной цепи, ответственны за потерю стеклом ионов кальция, алюминия и фторида. Реакция отверждения цемента — медленный процесс и требуется некоторое время для достижения стабильного состояния материала. Полупрозрачность отвержденного цемента вначале не видна и проявляется не ранее, чем через 24 часа после пломбирования.

И хотя материал кажется твердым сразу после затвердевания (обычно в течение 2-3 мин в зависимости от целевого назначения — в качестве его пломбировочного цемента или для фиксации), он достигнет своих конечных физических и механических свойств только в течение одного месяца.

Образование геля

Первоначальное схватывание связано с быстрым действием ионов кальция, которые, будучи двухвалентными и в начале в избытке, реагируют активнее с карбоксильными группами кислоты, чем трехвалентные ионы алюминия (Рис. 2.3.7). Эта фаза желапшнизащи или схватывания в процессе реакции отверждения.

Рис. 2.3.7. Фаза гелеобразования в процессе отверждения

Ряд процессов может происходить, если пломба не защищена от действия внешних факторов во время этой критической фазы. Ионы алюминия могут диффундировать из материала, и цемент может их лишиться, таким образом, утрачивается возможность образования поперечных связей с цепочками полиакриловой кислоты. Если теряется вода, не происходит завершения реакции отверждения.

В обоих случаях в результате пломбировочный материал будет ослабленным. Дополнительная влага может абсорбироваться пломбой, но в ней могут быть остатки крови или слюны, что приведет к ухудшению эстетических свойств пломбы, которая будет тусклой с выраженным белым оттенком. Загрязнение влагой может вызвать появление дефектов пломбы. Поэтому, следует избегать проникновения в пломбу как загрязненной влаги, так и ее пересыхания.

Затвердевание

После фазы образования геля наступает фаза твердения, которая может продолжаться до 7 дней. Требуется около 30 мин для того взаимодействия с ионами алюминия, которые обеспечивают конечную прочность цемента. В отличие от ионов кальция трехвалентные ионы алюминия обеспечивают высокую степень сшивания полимерных молекул поперечными связями (Рис. 2.3.8).

Рис. 2.3.8. Фаза окончательного затвердевания в процессе отверждения

В период образования алюминиевых солевых мостиков вода связывается в геле двуоксида кремния, который окружает нерастворенное остаточное ядро каждой частицы стекла. Когда цемент полностью прореагирует, показатель его растворимости становится минимальным. Конечная структура стеклоиономера показана на Рис. 2.3.9. В нее входят частицы стекла, каждая из которых окружена гелем двуоксида кремния в матрице из поперечно-связанной полиакриловой кислоты.

Рис. 2.3.9. Структура стеклоиономерного цемента

В то время как в других пломбировочных материалах стекло должно противостоять высвобождению ионов, в стеклоиономерных цементах контролируемое высвобождение ионов кальция и алюминия является важным свойством для затвердения. Правильный выбор стекла для производства стеклоиономеров обеспечивает получение хороших его рабочих характеристик, низкой растворимости, соответствующего высвобождения фторида и эстетичности пломб.

Клиническое значение

Стеклоиономерные цементы отверждаются медленно, в этот период необходима их изоляция от воздействия среды полости рта, чтобы избежать растворения или загрязнения.

Основы стоматологического материаловедения
Ричард ван Нурт

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector