Omskvorota.ru

Строим дом
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса гипса

Подпорные стенки. Устройство основных конструкционных элементов

Условия для самостоятельного строительства подпорных стенок. Основные конструктивные элементы стенок

Подпорные стенки своими руками можно возводить на устойчивых грунтах (глины, суглинки, супеси, галька, щебень, гравий и т.д.), минимальной глубине залегания грунтовых вод на уровне 1-1,5 м от поверхности, а максимальная глубина промерзания до 1,5 м.

Цифровые величины носят рекомендательный характер.

Принципиальная схема и основные элементы конструкции подпорной стенки

1 – водоотвод; 2 – дренаж; 3 – фундамент; 4 – тело.

Общие рекомендации и важные моменты для всех типов подпорных стен

  • Чаще всего на приусадебных участках строят подпорные стенки высотой от 30 см до 2 м. Когда уступы (террасы) небольшие (по высоте до 1,4 м и ширине до 4 м), делают стенки высотой 1,2-1,4 м (оптимальная высота стенки). Их можно построить самостоятельно без специальных расчетов. Если же высота стенки превышает 1,5 м, для выбора ее конструктивного решения и параметров (толщины, длины, высоты, формы, материала) нужно приглашать специалиста.
  • Рекомендуемая толщина подпорной стенки должна быть не менее: для каменной кладки и бутобетонной 0,6 м; для бетонной кладки 0,4 м; для железобетона 0,1 м.
  • Подпорная стенка из бетона, камня или кирпича при высоте более 30 см должна иметь фундамент. Он может быть разной толщины и глубины, в зависимости от конструкции стенки и грунта, на котором она возводится. При высоте стенок менее 30 см фундамент практически не нужен. Они возводятся с заглублением в грунт. Для предотвращения отрицательного влияния вспучивания грунта на стенку зимой, необходима тщательная песчано-гравийная подготовка основания стенки. Подготовка может достигать толщины 40–60 см. Величины глубины заложения фундаментов:
    • при высоте стенки от 30 до 80 см фундамент закладывают глубиной от 15 до 30 см;
    • при высоте стенки от 80 до 150 см — глубиной от 30 до 50 см;
    • при большей высоте, до 200 см – глубиной до 60 — 70 см.
    • если высота стенки превышает 2 м, то необходимо усиление фундамента с помощью арматуры. Фундамент можно выполнять из бетона, а также гравия, щебня, песка при уплотнении их тяжелой глиной или скрепленные цементным раствором. Если грунт подвижный, близко залегают грунтовые воды (1,0-1,5 м от поверхности грунта), большой перепад высот (более 1,5 м), то подпорные стенки должны заглубляться с расчетом в 1,5 раза больше ее ширины.
  • Целесообразно, чтобы стенка (от ее общей высоты) минимально была заглублена на 1/3, а 2/3 находилось над поверхностью грунта. Это позволит с достаточной уверенностью обеспечить устойчивость стенок;
  • Зная высоту стены, можно определить ее ширину. На прочных глинистых почвах толщина основания стены должна составлять 1/4 ее высоты. На среднерыхлых — 1/3 высоты. На рыхлых песчаных или на влажных почвах — 1/2 высоты. Обычно подпорная стенка сужается кверху, образуя «корону» (верхняя часть подпорной стенки). Например, толщина короны у каменной стены рекомендуется в пределах 30 — 50 см.
  • При строительстве стенок необходимо учитывать, что их криволинейные или ломаные конфигурации обладают большей жесткостью и выдерживают большую нагрузку. Это связано с тем, что выполняя ломанную или скругленную линию стены, уменьшается длина пролета и соответственно нагрузка на стену. При этом они смотрятся более привлекательно и эстетичней.
  • За подпорной стенкой скапливается вода, которая оказывает гидростатического давления на конструкцию, что снижает прочность и устойчивость конструкции. Поэтому, независимо от материала, высоты и формы стены, для предупреждения застойного переувлажнения почвы вдоль внутренней стороны стенки во всех случаях необходима организация дренажа и водоотвода. Также в зависимости от конструкции стенки применяется гидроизоляция ее внутренней стороны (см. ниже).

Дренаж подпорной стенки

  • Дренаж может быть продольный, поперечный или комбинированный – продольно-поперечный.
  • При поперечном дренаже в толще стены оставляют отверстия диаметром до 10 см или встраивают трубки диаметром 5 см с уклоном, чтобы вода уходила за пределы террасы в близлежащий водоприемник. Также можно в 1-3 рядах кирпичной или каменной кладки оставлять незацементированным один вертикальный шов. Шаг установки дренирующих труб (отверстий) рекомендуется -1,0 м.
  • При продольном дренаже вдоль стенки на уровне фундамента укладывается дренажная гофрированная труба, завернутая в геотекстильный материал. При ее отсутствии также применяются керамические или асбоцементные трубы диаметром 100-150 мм с перфорацией.

Схема продольного дренажа стенки

1 — тело стенки из бетона; 2 — бетонный фундамент; 3 — дрена; 4 — щебень; 5 — геотекстиль; 6 — песок; 7 – грунт.

Схема поперечного дренажа стенки

1- щебень; 2 – тело стенки из бетона; 3 – дренажная трубка.

Вода впитывается геотекстильным материалом, затем попадает через отверстия в трубу и отводится за пределы террасы. В обоих вариантах, между стенкой и грунтом укладывают дренирующий слой в виде фракционных материалов (гравий, галька, битый кирпич и т.д.) или крупнозернистый песок толщиной 70-100 мм. Слой устраивают одновременно с подсыпкой грунта. Несмотря на то, что, например гравий, создает значительное давление на стенку, он служит дополнительным дренирующим слоем, хорошо пропускающим воду к водосточным отверстиям.

В качестве полноценной замены фракционным материалам применяют дренажные полотна (дренажный объемный геотекстиль, дорнит, и др.).

Схема работы продольного дренажа

Примечание: Дренажные гофрированные трубы применяются при осушении земель в дорожном строительстве, в коммунальном и подсобном хозяйствах. Они изготовлены из полиэтилена низкого давления (ПНД). Префильтр препятствует проникновению в трубу частиц песка или грунта и предохраняет систему от заиливания. Хорошо гнутся. Соединяются друг с другом муфтами.

Образец гофрированной дренажной трубы

Образец гофрированной дренажной трубы с фильтром (геотекстиль)

Соединительные элементы гофрированной дренажной трубы

Заполнение пространства за подпорной стенкой

После того как стенка сложена и простояла несколько дней, следует заполнить пространство между ней и склоном сначала дренирующими грунтами – песчаными или крупнообломочными. Можно использовать битый кирпич, куски бетона и т.д. образовав дренирующий слой. Затем, послойно, толщиной 20-40 см засыпается ранее вынутый грунт и трамбуется. Желательно чтобы это были местные крупнообломочные грунты, пески супеси, а иногда и суглинки. Такие грунты предпочтительны для всех типов подпорных стен. Сверху укладывается слой растительного грунта.

Если через некоторое время (несколько недель) грунт осядет, надо его добавить и затем восстановить полностью на террасах нарушенный плодородный слой почвы. Важно чтобы сверху был заложен богатый гумусом ранее снятый слой почвы. После этого можно приступить к благоустройству террасы.

Важно! Глины, торфы, илы, плывуны, грунты, содержащие органические и растворимые включения более 5% по весу и мерзлые грунты для обратной засыпки НЕ пригодны.

Для предотвращения просачивания атмосферной воды в швы кладки, что ведет при ее замерзанием к разрушению стены, необходимо в монолитных стенах предусматривать козырек (б) со слезником, а в сборных устанавливать карнизный блок (а) с небольшим уклоном. На косогорных участках с целью отвода атмосферных вод за тыльной гранью стены должен быть устроен водоотводный кювет.

Устройство карниза стены: а — бетонный карнизный блок; б — железобетонный козырек

Выбор материала для подпорных стен обусловливается технико-экономическим расчётом, требованиями долговечности, охраны окружающей среды, условиями производства работ, наличием местных материалов и другими факторами.

Материалы для подпорных стенок

Подпорные стены могут быть выполнены из разных материалов. Каждый из применяемых материалов, по-своему влияет на их прочностные данные и на эстетическое восприятие территории участка в целом:

Рекомендуемые марки материалов для подпорных стенок:

Гидроизоляция поверхности подпорных стенок

Поверхность подпорных стенок (кроме подошвы фундамента) со стороны грунта защищается гидроизоляционным слоем. В качестве гидроизоляции можно применять различные материалы — рубероид, толь кровельную (в один — два слоя). Они наклеиваются по горячей битумной мастике. Синтетические гидроизоляторы и т.д. При сухих грунтах достаточно обмазать поверхность горячей мастикой, битумом (как правило, в 2 слоя).

Для продления срока службы, необходима гидроизоляция для подпорных стенок выполненных из дерева, кирпича, бутобетона, железобетона, бетона и металла.

Фундаменты подпорных стенок

По степени заглубления фундаменты подпорных стенок подразделяются на фундаменты мелкого и глубокого заложения. Фундамент глубокого заложения — глубина заложения, которых в 1,5 и более раза превышающая их толщину в поперечном сечении. Толщина фундамента и глубина его заложения зависит от размеров конструкции подпорной стенки, характеристик подстилающих грунтов, глубины залегания подземных вод и глубины промерзания грунта. Применяются, как правило, фундаменты ленточные и свайные. Ленточный фундамент представляет собой монолитную, сборную или состоящую из отдельных блоков конструкцию, повторяющую линию подпорной стенки. Глубина залегания такого фундамента, как правило, не менее 60см. При промерзании грунта, глубину фундамента связывают с глубиной промерзания. Свайные фундаменты более глубокие, чем ленточные. Ряды свай заглубляют могут быть заглублены в грунт на несколько метров. Такой метод используют при слабонесущих грунтах, и обеспечивает проникновение под телом стенки потока грунтовых вод. В этом случае грунтовые воды свободно проходят между сваями, не создавая подпора для стенки и склона.Технология строительства этих фундаментов схожа с их строительством для домов и хорошо изложена в статьях: Технология устройства свайного фундамента; Варианты применения свайного фундамента; Устройство и расчет ленточного фундамента.

Тело подпорной стенки

Тело подпорной стенки — это надземная часть несущей конструкции, которая также выполняет и декоративные функции. Тело гравитационных подпорных стенок для обеспечения их устойчивости должно обладать достаточной массой.

Примечание: Гравитационные подпорные стенки обеспечивают устойчивость за счет своей массы и массы грунта, находящегося над подошвой конструкции стенки, а также силы трения, возникающей в плоскости подошвы стенки.

Стенка может быть как жестко закрепленной в грунте, так и упругой конструкцией.

Стенки с жестко закрепленной конструкцией — это монолитные стенки из бетона, кладки из камня, кирпича или бетонных блоков, связанных цементным раствором.

К упругим конструкциям относятся подпорные стенки, которые выдерживают небольшие деформации без растрескивания. К этой группе относятся стенки сухой каменной кладки, ряжевые, габионные стенки. Ширина верхней части таких стенок не должна быть меньше 45 см, обычно она составляет 45-60 см.

В зависимости от конструкции и высоты подпорной стенки определяют необходимость наклона ее передней и задней граней. Для гравитационных подпорных стенок жестко закрепленной конструкции, высота которых вместе с фундаментом не превышает 1,5 м, наклон передней грани не требуется. При увеличении высоты, небольшой наклон (10 -15 град. от вертикали в сторону склона) передней грани стенки позволяет создавать оптическую иллюзию вертикальности, что улучшает ее визуальное восприятие и позволяет скрыть недостатки в отделке фасада (незначительные неровности при наклоне становятся менее заметными). Помимо этого, наклон может повысить устойчивость стенки к опрокидыванию. Как уже отмечалось выше – наклон задней грани стенки в сторону засыпки снижает давление грунта на нее. Величина наклона зависит от грунта и технологических возможностей при строительстве и определяется расчетом.

Определение угла наклона задней грани подпорной стенки

Очень приблизительно максимальный угол наклона задней грани стенки (град.) можно определить самому по формуле:

tg e=(b-t)/h, (1)

e — угол наклона расчетной плоскости к вертикали; b — ширина подошвы фундамента; h — расстояние от поверхности грунта до подошвы фундамента; t — толщина стенки; j — угол внутреннего трения.

Угол наклона расчетной плоскости к вертикали e определяется из условия (1), но принимается не более (45° -j /2).

Исходя из вышесказанного, угол наклона стенки также приблизительно можно определить по формуле:

e=45°-j /2

Примечание: Угол внутреннего трения — угол трения между частицами внутри сыпучего тела. Ввиду трудности определения этого угла его обычно принимают равным углу естественного откоса, что допустимо для песчаных грунтов. Угол естественного откоса — предельный угол, образуемый поверхностью свободно насыпанного грунта с горизонтальной плоскостью. Он характеризует трение между частицами сыпучего тела на его поверхности.

В зависимости от пористости грунтов нормативные значения угла внутреннего трения j (град) составляют.

Для песчаных грунтов:

Для пылевато-глинистых нелессовых грунтов:

  • Супеси 30-18;
  • Суглинки 24-12;
  • Глины 18-11.
  • В данной статье мы рассмотрели основные конструктивные элементы подпорных стен, и основные важные моменты для стен из различных материалов. В следующей статье цикла будут рассмотрены конкретные примеры подпорных стен из разных материалов, и технология их строительства.
  • Энергетическое использование древесных отходов стр.19

    Коэффициент полнодревесности топливной щепы практически одинаков с этим коэффициентом для технологической щепы. При проведении технологических расчетов коэффициенты полнодревесности измельченной древесины и древесных отходов рекомендуется выбирать в следующих пределах:

    Щепа из отходов лесозаготовок . 0,30. . .0,36

    Щепа из отходов деревообработки. 0,32. . Л,38

    Опилкн рыхлые . 0,20. . .0,30

    Опилкн слежавшиеся. 0,33. . .0,37

    Сучья и хворост, увязанные в пучки . 0,35. . .0,40

    Рейка . 0,35. . .0,60

    Горбыль . 0,45. . .0,60

    Дрова . 0,70. . .0,80

    2.9. МЕХАНИЧЕСКИЕ СВОЙСТВА ИЗМЕЛЬЧЕННОЙ ДРЕВЕСИНЫ И МЕЛКИХ ДРЕВЕСНЫХ ОТХОДОВ

    Свойство частиц измельченной древесины самопроизвольно ссыпаться под действием силы тяжести называется сыпучестью. Сыпучесть характеризует способность материала проходить через сужения, высыпаться из бункеров, нижняя часть которых имеет коническую форму, проходить через узкие сечения шахт топочных устройств и т. п. Наилучшей сыпучестью отличается щепа из отходов деревообработки. Несколько хуже сыпучесть у опилок, которые имеют свойство уплотняться в процессе хра-

    18. Коэффициенты трения скольжения щепы

    Коэффициенты треиия прн влажности щепы.

    Стальная не корродированная

    Из стволовой древесины

    Стальная не корродированная

    нения. Малой сыпучестью обладает щепа из отходов лесозаготовок.

    Коэффициентом внутреннего трения называют отношение силы, необходимой для сдвига сыпучего материала в определенной плоскости, к величине силы, сдавливающей частицы материала перпендикулярно этой плоскости.

    Коэффициент внутреннего трения сыпучего материала в первом приближении равен тангенсу угла естественного откоса этого материала. Угол естественного откоса измельченной древесины при расчетах устройств для хранения, складирования и сжигания принимают равным 45°.

    Коэффициенты трения скольжения щепы о различные поверхности, необходимые для расчета бункерных устройств, приведены в табл. 18.

    2 10. СВОЙСТВА ДРЕВЕСНОЙ ПЫЛИ

    Древесная пыль, образующаяся при шлифовании древесины, фанеры, древесностружечных и древесноволокнистых плит не подлежит хранению как в буферных складах котельных, так и в складах межсезонного хранения мелкого древесного топлива ввиду ее высокой парусности и взрывоопасности.

    При сжигании древесной пыли в топочных устройствах должно быть обеспечено выполнение всех правил Госгортехнадзора по сжиганию пылевидного топлива, предупреждающих возникновение вспышек и взрывов внутри топочных устройств и в газовых трактах паровых и водогрейных котлов.

    Древесно-шлифовальная пыль представляет собой смесь древесных частиц размером в среднем 250 мкм с абразивным порошком, отделившимся от шлифовальной шкурки в процессе шлифования древесного материала. Содержание абразивного материала в древесной пыли может доходить до 1 % по массе.

    Угол естественного откоса песка под водой

    parlini.ru Ремонт квартиры, дачи и дома.

    Углом естественного откос а называют угол, при котором неукрепленныйтоткос песчаного грунта сохраняет равновесие, или угол, под которым располагаются свободно насыпаемый песок и другие сыпучие материалы.

    Угол естественного откос а определяют в воздушно-сухом состоянии и под водой с помощью диска, имеющего вертикальный тарировочный стержень

    1. Для определения угла естественного откоса в воздушно-сухом состоянии диск устанавливают в стеклянную банку, на диск ставится кожух.

    2. В кожух засыпается песок в естественно-сухом состоянии.

    3. Кожух плавно снимается с диска, и излишек песка осыпается, а на диске остается конус из песка, вершина которого в месте соприкосновения со стержнем показывает значение угла откоса.

    4. Для определения угла естественного откоса под водой диск устанавливают в стеклянную банку, а на диск ставится кожух.

    5. В кожух засыпается песок в естественно-сухом состоянии.

    6. Банка заполняется водой до верха кожуха.

    7. Песок, осевший в кожухе, засыпается доверху.

    Гранулометрический состав. Практически характер и качество разрушения породы четко определяется ее гранулометрическим составом. Он характеризует разрыхленную горную породу по процентному содержанию в ней частиц различной крупности и может быть изображен кривой (рис. 2.1), если по оси абсцисс отложить диаметр частиц, мм, а по оси ординат — суммарное содержание частиц диаметром, меньшим данного, в процентах.
    Для характеристики неоднородности рыхлых пород используется отношение d60/d10=Kн называемое коэффициентом неоднородности (d60, d10 — максимальные диаметры кусков, составляющих 60 и 10% общего объема рыхлой породы соответственно).
    Особенно важное значение гранулометрический состав породы имеет при процессах гидромеханизации. От него зависят удельный расход воды на разработку и транспортирование, наименьший допустимый уклон подошвы забоя и лотков, критическая скорость воды.
    Угол естественного откоса φ — максимальный угол, образуемый свободной поверхностью рыхлой раздробленной породы с горизонтальной плоскостью. Частицы породы, находящиеся на этой поверхности, испытывают состояние предельного равновесия. Если вес частицы Р (рис. 2.2), то в состоянии предельного равновесия на свободной поверхности на частицу действуют силы: Рп — сила нормального давления, прижимающая частицу к свободной поверхности; Рτ — сила, стремящаяся сдвинуть частицу вниз; Fт — сила трения, зависящая от Рn и коэффициента трения fтр, R — реакция опоры. Поскольку частица находится в равновесии, имеем

    Таким образом, угол естественного откоса зависит от коэффициента трения между кусками породы и поверхностью, по которой возможно ее скольжение. Для рыхлой (сыпучей) среды, например песка, он может быть определен с помощью цилиндрической емкости без дна. Емкость устанавливают на горизонтальной площадке и заполняют породой. Затем емкость поднимают и порода формирует свободную поверхность, соответствующую углу естественного откоса.
    В общем случае угол естественного откоса зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от плотности материала. С увеличением влажности до некоторого предела у таких горных пород, как уголь или песок, угол естественного откоса возрастает. С увеличением крупности и угловатости частиц он также увеличивается. В целом у рыхлых пород он находится в пределах 0-40°.
    По углам естественного откоса определяют максимальные допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

    Угол естественного откоса

    Угол естественного откоса

    Угол естественного откоса — угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего материала с горизонтальной плоскостью. Иногда может быть использован термин «угол внутреннего трения».

    Частицы материала, находящиеся на свободной поверхности насыпи, испытывают состояние критического (предельного) равновесия. Угол естественного откоса связан с коэффициентом трения и зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от удельного веса материала.

    По углам естественного откоса определяются максимально допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей. угол естественного откоса из различных материалов

    Список из различных материалов и их угла естественного откоса. Данные приблизительные.

    Материал (условия)Угол естественного откоса (градусы)
    Пепел40°
    Асфальт (измельченный)30-45°
    Кора (деревянные отходы)45°
    Отруби30-45°
    Мел45°
    Глина (сухой кусок)25-40°
    Глина (мокрой раскопки)15°
    Семена клевера28°
    Кокос (измельченный)45°
    Кофе зерна (свежие)35-45°
    Земля30-45°
    Мука (пшеница)45°
    Гранит35-40°
    Гравий (насыпной)30-45°
    Гравий (натуральный с песком)25-30°
    Солод30-45°
    Песок (сырой)34°
    Песок (с водой)15-30°
    Песок (влажный)45°
    Пшеница сухая28°
    Кукуруза сухая27°

    Лабораторные исследования песка

    Виды лабораторных исследований для песчанистых грунтов

    Наша организация проводит инженерно-геологические изыскания в полном комплексе. Лабораторные исследования наши специалисты выполняют в аккредитованной лаборатории нашего предприятия. Учитывая особенности песчанистых грунтов , мы предлагаем следующие виды лабораторных испытаний:

    • определение гранулометрического состава ситовым методом;
    • определение естественной влажности грунта;
    • расчет плотности грунта при помощи расчетного способа;
    • коэффициент фильтрации;
    • угол естественного откоса.
    Гранулометрический состав

    Лабораторные исследования песчанистых грунтов на гранулометрический состав выполняются ситовым методом. Данный метод представляет собой разделение исследуемого грунта по фракциям во время его просеивания через сита (разных величин). В зависимости от размеров зерен песка в грунте используется либо ситовой способ без промывки (размер зерен 10-0,5 мм), либо с промывкой (размер зерен 10-0,1 мм). Результаты исследований записываются в отдельную таблицу, после чего проводятся вычисления по формулам, указанным в нормативных документах.

    Определение естественной влажности грунта

    Естественной влажностью песчанистых грунтов называется то количество воды, которое содержится в порах образца грунта в естественной среде. В лабораторных условиях данный показатель определяется весовым методом, т.е. влажность определяется как отношение массы воды, которая удалена из исследуемого образца способом высушивания, к массе сухого грунта. Влажность и несущая способность грунтов имеют обратную зависимость: чем больше показатель влажности, тем меньше несущая способность грунта.

    Определение плотности песчанистого грунта

    Для данного типа грунтов плотность определяют расчетным методом. Зная влажность исследуемого грунта, по исходным формулам вычисляется плотность сухого грунта.

    Коэффициент фильтрации

    Лабораторные исследования песчанистых грунтов на коэффициент фильтрации проводятся при помощи специального прибора. Для данного испытания необходимо подготовить грунт: песок и вода должны находиться в помещении лаборатории до полного выравнивания их температур. Только после этого лаборант приступает к исследованию. Коэффициент фильтрации необходим для уточнения пропускной способности влаги в отобранном образце грунта.

    Угол естественного откоса

    Данный показатель определяется для уточнения сопротивлений исследуемого грунта сдвигу. Также это влияет на прочностные характеристики песчанистых грунтов . Угол естественного откоса является показателем устойчивости грунта при определенной влажности против осыпания под влиянием собственного веса (и других нагрузок). Чем больше показатель этого угла, тем выше его сопротивление сдвигу (что обязательно учитывается при расчете и выборе фундамента здания).

    В конечном результате, зная данные показатели, специалисты могут определить и другие физико-механические свойства песчанистых грунтов. Важно проводить геологические изыскания в комплексе с лабораторными исследованиями для получения максимально достоверной информации о геологических особенностях на конкретном участке. Только после этого проектировщики смогут сделать правильный выбор типа фундамента и его заглубления в грунт.

    Свойства и классификация грунтов

    • Инженерное направление
      • Геодезические работы
        • Контрольно-геодезическая съёмка
        • Геодезический мониторинг
        • Геодезические работы при строительстве дорог
        • Геодезическое сопровождение
        • Исполнительная геодезическая съемка
        • Трассирование линейных объектов
        • Разбивка осей зданий
        • Съемка подземных коммуникаций
        • Фасадная съемка
        • Геодезия участка
        • Подсчёт объёмов земляных масс
        • Геодезический контроль
        • Вынос проекта в натуру
      • Маркшейдерские работы
        • Маркшейдерские наблюдения за сдвижениями горных пород и земной поверхности под влиянием горных работ
        • Маркшейдерские работы при освоении месторождений полезных ископаемых
        • Маркшейдерские работы при строительстве подземных сооружений
        • Маркшейдерский аудит
        • Маркшейдерские съёмки
      • Топографические работы
        • Топографическая съемка местности
        • Определение объемов складирования
        • Геоподоснова земельного участка
        • Подеревная топографическая съёмка
        • Ландшафтная съемка
        • Топографическая съемка для газификации
      • Экологические изыскания
        • Экологическая оценка
        • Экологическое сопровождение
        • Экологический мониторинг производства
        • Инженерно-экологические изыскания почвы
        • Экологическое сопровождение строительства
      • Геологические изыскания
        • Инженерно-геологическая съемка участка
        • Исследования физико-механических свойств грунтов
        • Гидрогеологические исследования
        • Инженерно-геофизические исследования
      • Геотехнические изыскания
      • Бурение скважин
      • Проектирование зданий
        • Проектирование ангаров
        • Проектирование ферм
        • Проектирование складов
      • Обследование зданий
    • Научное направление
      • Аналитический отдел
      • Лаборатория геомеханики
      • Лаборатория физико-механических свойств горных пород
      • Научно – технический совет

    Цель нашей компании – реализация современных подходов в области научного сопровождения освоения недр Земли отраслевого значения. Инновации в инженерном обеспечении горной промышленности и изысканиях при работах, оказывающих влияния на безопасность объектов капитального строительства.

    Состав почвы является одним из самых главных критериев, по которым выбирается участок под застройку. Существует большое количество разновидностей грунтов, которые относят к разным группам. Так как геодезические работы осуществляются преимущественно согласно строительному проекту, то наиболее востребованной станет именно эта классификация. Строительная классификация грунтов является наиболее распространенным методом изучения свойств почвы и позволяет выделить его основные характеристики. От особенностей грунта зависит возможность дальнейшего использования участка для определенных целей, поэтому без тщательного исследования физико механических свойств грунтов не обойтись.

    Классификация грунтов

    Выделяют два основных класса грунтов:

    • Скальные.
    • Нескальные.

    Жесткие структурные связи в скальных почвах делают сложным застройку участков с таким типом грунтов. Плотная структура осложняет закрепление несущие элементы будущего объект. Нескальные почвы не имеют жестких структурных связей и отличаются своим многообразием. Дисперсность и рассыпчатость почвы является главным признаком нескальных грунтов. Хоть прочность у нескальных почв значительно ниже, чем у скальных, но строительство на участках с таким типом почвосмеси наиболее предпочтительно.

    Какие бывают почвы

    В строительной классификации присутствуют несколько видов грунта:

    • Скальный. Категория представляет собой крепкие породы, которые отличаются прочностью и низким водопоглощением. Практически непригодны для строительства, так как залегают в виде массивов и на них трудно надежно закрепить объекты либо проложить магистрали. К скальным породам относятся: гранит, известняк и т. д.
    • Полускальный. Сцементированные породы, которые могут уплотняться. На участке с полускальными грунтами строительство должно учитывать особенность материала и подбирать технологии и стройматериалы для дальнейшего предотвращения уплотнения и просадки. Чаще всего категория представлена гипсом и алевролитом.
    • Песчаный. Непластичная почва, которая образовалась в результате разрушения скальных пород. В среднем гранулы песка могут иметь размеры. Каждая песчинка считается таковой при наличии размеров от 0,05 до 2 мм.
    • Крупнообломочный. Очень похож на классический песчаный грунт, но при этом размер гранул будет превышать отметку в 2 мм. В составе почвы данного вида присутствует более 50% крупных обломков, благодаря чему почвосмесь имеет неоднородный состав.
    • Глинистый. Глинистая почва представляет собой супермелкую фракцию, размер частиц которой составляет 0,005 мм. Изначально это скальная порода, которая была существенно деформирована и разрушена за длительный период времени.

    Глинистые и песчаные грунты преобладают на территории Российской Федерации. Строительство может производиться на различных почвосмесях, но при этом важно учитывать свойства грунтов для выбора наиболее оптимальных стройматериалов.

    Свойства грунтов

    В зависимости от состава и свойства грунтов рассчитывается стоимость и технология строительных работ, а также трудоемкость земельных работ. Основными свойствами грунтов выступают:

    1. Влажность. В зависимости от насыщенности почвы водой различают два типа грунтов: сухие и мокрые. Сухие почвосмеси содержат в своем составе не более 5% влаги. Мокрые грунты могут иметь показатель влажности более 30%, а также иметь разный размер пор.
    2. Плотность. Плотность материала рассчитывается путем измерения массы одного кубического метра почвы. В среднем нескальные породы имеют плотность в пределах 1,5-2 тонны/м 3 , а скальные — до 3 тонн.
    3. Размываемость. Показатель обозначает скорость течения жидкости, вымывающей породу. Если для мелкопесчаных грунтов этот показатель должен быть менее 0,6 м/с, то для глин — 1,5 м/с.
    4. Разрыхленность. Каждый грунт при разработке увеличивается в объеме и не восстанавливает свои изначальные размеры в течение длительного времени. При строительстве различают два типа разрыхления. Первоначальное разрыхление измеряется сразу после разработки почвы. Песчаные почвосмеси имеют первоначальный коэффициент в пределах 1,08-1,17, суглинки и глинистые — 1,14-1,3. Если грунт вывозится за территорию участка, то этот показатель позволяет эффективно использовать транспорт. Остаточное разрыхление для почв на основе песка равно 1,01-1,025, для глинистых и суглинистых — 1,015-1,09.
    5. Сцепленность. От сцепленности грунтов зависит сложность проведения работ. Мерзлый грунт имеет наибольший показатель сцепленности и является достаточно сложным для разработки. Песчаные почвы имеют силу сцепления 0,003-0,05 МПа, глинистые грунты — 0,005-0,2 МПа.
    6. Угол естественного откоса. Данный показатель имеет большое значение при устройстве отвалов и насыпей. Также показатели учитываются при рытье траншей и котлованов, откосов.

    Классифицирование грунтов позволяет сделать строительно-земельные работы более простыми благодаря известным свойствам почвы. Выбор подходящей техники и оборудования позволяет сэкономить не только материальные ресурсы, но и сделать труд рабочих более простым.

    голоса
    Рейтинг статьи
    Читайте так же:
    Отделка откосов гипсокартоном после утепления лоджии
    Ссылка на основную публикацию
    Adblock
    detector