Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реологические свойства цементных растворов

ГЛАВА 3. БЕТОННАЯ СМЕСЬ

Формирование свойств бетона начинается с приготовления, укладки и затвердевания бетонной смеси. Эти операции во многом определяют будущее качество бетона и изделия. Поэтому очень важно хорошо знать свойства бетонной смеси, зависимость их от различных факторов, умело управлять процессами приготовления, укладки и затвердевания бетонной смеси.

Наиболее важным свойством бетонной смеси является удобоукладываемость или формуемость, т. е. способность смеси растекаться и принимать заданную форму, сохраняя пюи этом монолитность и однородность Удобоукладываемость определяется подвижностью (текучестью) бетонной смеси в момент заполнения формы и пластичностью, т. е. способностью деформироваться без разрыьа сплошности

Для описания поведения бетонной смеси в различных условиях используют ее реологические характеристики: предельное напряжение сдвига, вязкость и период релаксации. Для определения этих свойств применяют специальные вискозиметры. Подобные испытания выполняют главным образом в научно-исследовательских лабораториях. В производственных же условиях контролируют чаще всего подвижность (текучесть) смеси, для чего применяют приборы, позволяющие быстро и сравнительно просто получать необходимую характеристику бетонной смеси.

Для полной оценки бетонной смеси и правильной организации производства бетонных и железобетонных изделий и конструкций необходимо знать и другие свойства смеси: ее у плотняе- мосто, однородность, рпсслаиваемость, изменение объема в процессе затвердевания, воздуха во в лечение, первоначальную прочность (для жестких бетонных смесей при применении немедленной распалубки изделий).

Особенностью бетонной смеси является практически постоянное изменение свойств ее от начала приготовления до затвердевания, что обусловливается сложными физико-химическими процессами, протекающими в бетонной смеси и бетоне. Как уже указывалось, бетонная смесь представляет собой сложную многокомпонентную систему. Вследствие наличия сил взаимодействия между дисперсными частицами твердой фазы и воды эта система приобретает связанность и может рассматриваться как единое

физическое тело с определенными реологическими, физическими и механическими свойствами

Основное влияние на эти свойства оказывают количество и кичество цементного тести, так как именно цементное тесто, являясь дисперсной системой, имеет высокоразвитую повер сность раздела твердой и жидкой фаз, что способствует развитию сил молекулярного сцепления и повышению связанности системы. Решающее влияние на свойства бетонной смеси оказывает расход воды, так как он определяет объем и строение жидкой фазы и развитие счл сцепления, характеризующих связанность и подвижность всей системы

В процессе гидратации цемента (до момента затвердевания) появляется все большее количество гелеобразных гидратных соединений новообразований, что способствует увеличению дисперсности твердой фазы и соответственно повышению клеящей и пластифицирующей способности цементного теста и его связующей роли в бетонной смеси. Вместе с тем постепенно уменьшается подвижность смеси.

Цементное тесто относится к так называемым структурированным системам, которые характеризуются некоторой начальной прочностью структуры. В цементном тесте создается структура за счет действия сил молекулярного сцепления между частицами, окаймленными тонкими пленками воды Пленки жидкой фазы создают непрерывную пространственную сетку в структуре цементного теста, придавая ему свойство пластичности и способствуя формоизменению системы (течению) при приложении внешних силовых воздействий Начальная прочность структуры, или структурная вязкость, цементного теста зависит от концентрации твердой фазы в водной суспензии.

Обычно бетонные смеси содержат достаточное количество цементного теста и воды для создания сплошной среды. Такие смеси ведут себя подобно цементному тесту, обладая первоначальной прочностью структуры, определенными пластичностью и подвижностью.

Поведение структурированных систем при приложении внешних сил существенно отличается от поведения жидкостей. Если вязкость жидкости (истинная ньютоновская) является постоянной и не зависит от значения прикладываемого давления (вязкость жидкости меняется только с изменением температуры), то вязкость структурированных систем изменяется даже при постоянной температуре в несколько раз (часто на 2. 3 порядка) в зависимости от значения внешних сил, действующих на систему. Вязкость зависит от значения напряжения сдвига системы или скорости сдвиговых деформаций.

Под действием внешних сил происходит как бы разрыхление первоначальной структуры, ослабляются связи между ее отдельными элементами, а в результате возрастает способность системы к деформациям (течению), увеличивается се подвижность. При достижении критической скорости сдвига, когда первоначальная структура системы предельно разрушена, вязкость и сопротивление сдвигу достигают минимальных значений и даже малоподвижные смеси приобретают определенную текучесть После окончания действия внешних сил система возвращается в первоначальное состояние, восстанавливается начальная прочность структуры, уменьшается подвижность.

Способность структурированных систем изменять свои реологические свойства под в влиянием механических воздействий и восстанавливать их после прекращения воздействия называется тиксотропией. В технологии бетона это свойство широко используют для формования изделий из малоподвижных и жестких смесей путем воздействия на них вибраций, встряхиванием, толчками

Представление о поведении бетонной смеси при воздействии на нее внешних сил дает реологическ ш кривая, которую можно разделить на три участка. На первом участке при небольших значениях напряж ений сдвига т сохраняется неразрушенная первоначальная структура бетонной смеси, характеризую щаися наибольшей вязкостью. Писле достижения критического напряжения л, соответствующего пределу текучести системы, начинается разрушение структуры, юторое продолжается вплоть до полного разрушения при предельном напряжении. На этом втором участке по мере разрушения системы эффективная вязкость бетонной смеси постоянно падает при увеличении напряжений сдвига. После того как система предельно разрушена, бетонная смесь приобретает наименьшую вязкость (так называемую пластическую вязкость i)m—третий участок кривой), которая не зависит от значений действующих напряжений и не изменяется при их увеличении.

Как показали исследования, реологическая модель невибрируемой бетонной смеси может быть описана уравнением Шведова — Бингама

Это уравнение характеризует поведение бетонной смеси при транспортировании по трубкам с помощью бетононасосов и при укладке очень подвижной смеси некоторыми безвибрационными способами.

При вибрировании бетонной смеси ее начальная структура предельно разрушается, внутреннее трение и силы сцепления уменьшаются до минимума, в полной мере проявляется эффект тиксотропного разжижения и предельное напряжение сдвига становится очень малым. Так, по данным А. Е. Десова, предельное напряжение сдвига для раствора состава 1:2 равно 102 Па, для более жирных растворов еще меньше. В этих условиях поведение бетонной смеси с определенной степенью приближения можно описать уравнением Ньютона

С повышением содержания в бетонной смеси крупного заполнителя и уменьшением содержания воды или отсутствием сплошной среды из цементного теста сопротивление сдвигу значительно увеличивается. В системе не только повышается вязкое трение, но и возникает внутреннее сухое трение между зернами заполнителя. Для описания поведения таких смесей применяют уравнение Кулона

Читайте так же:
Что такое малоклинкерный цемент

Рассмотренные выше выражения, описывающие реологические свойства бетонной смеси, основываются па феноменологических представлениях, в которых бетонная смесь принимается за однородную изотропную среду, характеризующуюся интегральными показателями: вязкостью, предельным напряжением сдвига, коэффициентом внутреннего трения и др. Такие представления полезны при рассмотрении ряда технологических вопросов транспорта бетонной смеси, выгрузки смеси из бункеров, формования изделий и т. д. На основе полной реологической кривой и полученных реологических характеристик можно наиболее рационально подобрать технологию изготовления изделий из данной бетонной смеси.

На практике, однако, часто приходится решать задачу о подборе состава бетонной смеси, наилучшим образом отвечающего данной технологии изготовления конструкций. Для решения подобных задач необходимо знать взаимосвязь между составом бетонной смеси и ее реологическими свойствами. Для опенки последних в производственных условиях применяют упрощенные методы, получая технологические характеристики бетонной смесь- показатель жесткости, осадку конуса и др. которые характеризуют поведение смеси в определенных условиях и служат для ориентировочной оценки способности смеси к формоизменению и уплотнению при тех или иных условиях воздействия. Преимущество технических методов определения подвижности бетонной смеси — быстрота испытания и сравнительная простота используемых приборов, доступных для любой строительной лаборатории. Однако на основе этих испытаний нельзя получить полной реологической кривой бетонной смеси и соответственно полных данных о ее реологических свойствах.

Реологические свойства бетонных смесей . Вследствие коагуляционного структурообразования в цементном тесте бетонная смесь приобретает такие свойства твердого .
www.bibliotekar.ru/spravochnik-121-beton/6.htm

В зависимости от функционального назначения и достигаемого эффекта различают следующие добавки: регулирующие реологические свойства бетонных смесей, .
bibliotekar.ru/spravochnik-100-rastvor/12.htm

Способность структурированных систем изменять свои реологические свойства . Структура бетона образуется в результате затвердевания бетонной смеси и его .
www.bibliotekar.ru/spravochnik-76/61.htm

улучшать технологические и реологические свойства бетонной смеси;. • регулировать потерю подвижности смеси во времени, скорость процессов схватывания и .
bibliotekar.ru/spravochnik-94-stroymaterialy/44.htm

Чтобы этого не произошло, необходимо обеспечить заданные характеристики пластичности и вязкости смесей. Реологические свойства бетонной смеси и раствора .
bibliotekar.ru/spravochnik-104-stroymaterialy/63.htm

Простейшими реологическими характеристиками являются в настоящее время подвижность и жесткость бетонной смеси, косвенно отражающие ее вязостойкие свойства. .
bibliotekar.ru/stroymaterialy/39.htm

. способность сильно изменять реологические свойства бетонных смесей и характер . Введение в бетонную смесь полимеров гидрофобизирует цементный камень и .
www.bibliotekar.ru/spravochnik-96-polimerbeton/47.htm

Тип и содержание цемента в бетонной смеси определяют многие ее свойства, в том числе реологические, которые характеризуются величиной деформаций под .
www.bibliotekar.ru/spravochnik-74/127.htm

К содержанию книги: Технология бетона

Нефть, Газ и Энергетика

Блог о добычи нефти и газа, разработка и переработка и подготовка нефти и газа, тексты, статьи и литература, все посвящено углеводородам

Реологические свойства бурового раствора

Наиболее широко используемые в настоящее время буровые растворы представляют собой жидкости, содержащие дисперсную фазу. Как и обычные жидкости, они обладают подвижностью, т.е. способностью течь.

При этом первоначальное расположение частиц жидкости изменяется, происходит деформация. Наука о деформации и течении тел называется реологией, а свойства тел, связанные с течением и деформацией, называются реологическими.

Они характеризуются определенными величинами, не зависящими от условий их измерения и конструкции измерительных приборов. Такие величины называют реологическими константами.

Реологические свойства буровых растворов оказывают превалирующее влияние:

  • на степень очистки забоя скважины от шлама и охлаждения породоразрушающего инструмента

транспортирующую способность потока

величину гидравлических сопротивлений во всех звеньях циркуляционной системы скважины

величину гидродинамического давления на ее стенки и забой в процессе бурения

амплитуду колебаний давления при пуске и остановке насосов, выполнении СПО и проработке скважины с расхаживанием бурильной колонны

интенсивность обогащения бурового раствора шламом

скорость эрозии стенок скважин и др.

Изучение реологических свойств дисперсных систем основано на выявлении закономерностей связи между силами (напряжениями), вызывающими течение жидкости, и получаемыми при этом скоростями течения (деформациями).

Перечень основных и производных от них показателей, характеризующих реологические свойства буровых растворов, определяется выбором реологической модели.

Среди известных реологических моделей буровых растворов наибольшим распространением в отечественной и зарубежной практике пользуются модели Бингама — Шведова и Оствальда -де Ваале:

t = k×(g)n

где t — касательное напряжение сдвиаг, дПа;

g — скорость сдвига, мПа*с;

h — пластическая вязкость ПВ, мПа*с;

t0 — динамическое напряжение сдвига ДНС, дПа;

n — показатель неньютоновского поведения ПНП;

k — показатель консистенции ПК, мПа*с.

С помощью величин реологических характеристик можно определять коллоидно-химические свойства дисперсных систем, что очень важно для оценки качества промывочных жидкостей и выбора методов регулирования их свойств.

Стандартные полевые измерения вязкости бурового глинистого раствора проводятся с помощью вискозиметра буровых растворов ВБР-1 или воронкой Марша.

Вискозиметр ВБР-1, служащий для измерения условной вязкости, состоит из воронки, герметично соединенной трубки, сетки и мерной кружки.

Порядок определения. Взяв в руку воронку, устанавливают сетку на выступы, зажимают нижнее отверстие пальцем правой руки и заливают через сетку испытуемую жидкость до верхней кромки вискозиметра.

Подставив мерную кружку под трубку вискозиметра, убирают палец и одновременно левой рукой включают секундомер. Воронку необходимо держать вертикально (допускается отклонение не более 100). Когда мерная кружка наполнится до края, останавливают секундомер, а отверстие воронки вновь закрывают пробкой.

За исходный результат принимают среднее значение результатов трех измерений, отличающиеся между собой не более чем на 2 с.

Реологические свойства бетонной смеси

Главная > Реферат >Химия

Оглавление

СПИСОК ЛИТЕРАТУРЫ 22

ВВЕДЕНИЕ

Бетон – это сегодня самый применяемый строительный материал. К бетону предъявляется ряд требований, выполнить которые зачастую невозможно без использования так называемых модификаторов и пластификаторов, т.е. химических добавок, позволяющих придать бетонной смеси свойства, обеспечивающие требования как проектировщиков, так исполнителей работ.

Идеал строителей – бетонные смеси, которые имеют высокую подвижность, замедленное схватывание и быстрый набор прочности, длительное время транспортировки с последующей легкой заливкой в формы, универсальность применения, получения конструкций, не требующих значительных затрат на гидроизоляционные работы. При этом не следует забывать, что основной задачей является обеспечение требуемой прочности и долговечности бетонной конструкции, т.е. возможностью длительное время противостоять механическим нагрузкам, химическим и физическим воздействиям окружающей среды. Поэтому применение добавок в современном строительстве не только рекомендуется, но и просто жизненно необходимо.

Химические добавки применяются также для достижения необходимых свойств бетона, снижения расхода материальных и энергетических ресурсов при изготовлении этого материала и при применении его для производства конструкций, возведения зданий и сооружений. В настоящее время предприятия по изготовлению бетона, изделий и конструкций на его основе наряду со сравнительно дешевыми добавками, получаемыми часто из промышленных отходов, все шире применяют специально синтезируемые добавки на основе дорогого химического сырья. Такие добавки-модификаторы позволяют обеспечить высокое качество бетона и в широком диапазоне регулировать его свойства, однако при оценке целесообразности их введения, замены ими традиционных дешевых добавок приходится достигаемый технический эффект соизмерять с необходимыми дополнительными затратами.

Читайте так же:
Сравнительные характеристики цементных растворов

Общие физико-химические свойства бетонной смеси

Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения. Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону. Основной структурообразующей составляющей в бетонной смеси является цементное тесто. Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении. Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении. При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости. Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией.

1)Технические свойства бетонной смеси

При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность. Для оценки удобоукладываемости используют три показателя:

-подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси;

-жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси;

-связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.

Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью. Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.

2) Удобоукладываемость бетонной смеси

Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м 3 ) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси — подвижность и жесткость. Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков. Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.

3) Деформативные свойства бетона

Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия. Область условно упругой работы бетона — от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины. Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины. Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости. При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой: Есж =Ер=Еб.

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки. Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя — щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми. Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести. Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.

4) Усадка и набухание бетона

При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих. Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в. наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне. Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня.

Читайте так же:
Как смешать гипс с цементом

Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.

5) Морозостойкость бетона

Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 сут выдерживания в камере нормального твердения или через 7 сут после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.

6) Водонепроницаемость бетона

С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.

7) Теплофизические свойства бетона

Теплопроводность — наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий. Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя. Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м.С°). Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами. Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры. Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения.

Реологические свойства цементных растворов

ДОБАВКИ ДЛЯ ЦЕМЕНТОВ

Additions for cements. Classification

МКС 91.100.10
ОКП 57 4325

Дата введения 1991-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственной ассоциацией «Союзстройматериалов»

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 11.03.91 N 6

3. Стандарт полностью соответствует СТ СЭВ 6824-89

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Вводная часть, приложения А, Б

6. ПЕРЕИЗДАНИЕ. Декабрь 2009 г.

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 12, 2020

Настоящий стандарт распространяется на все виды добавок, применяемых при изготовлении цемента, и устанавливает их классификацию.

Определения к терминам, применяемым в настоящем стандарте, — по ГОСТ 30515.

1. Добавки для цементов в зависимости от основного воздействия на свойства цемента или технологию его изготовления подразделяют на:

1) компоненты вещественного состава;

2) регулирующие свойства цемента;

3) технологические, облегчающие процесс помола цемента, но не оказывающие существенного влияния на его свойства.

2. Добавки-компоненты вещественного состава

2.1а Добавки-компоненты вещественного состава по содержанию в цементе подразделяют на:

2.1. Добавки-компоненты вещественного состава по роли в процессе гидратации и твердения цемента подразделяют на:

1) активные минеральные;

2.2. Активные минеральные добавки по роду активности подразделяют на:

1) обладающие гидравлическими свойствами;

2) обладающие пуццоланическими свойствами.

3. Добавки, регулирующие свойства цемента

3.1. Добавки, регулирующие свойства цемента, по характеру регулируемых свойств подразделяют на:

1) регулирующие основные строительно-технические свойства цемента;

2) регулирующие специальные свойства цементов.

3.2. Добавки, регулирующие основные строительно-технические свойства цемента, подразделяют на:

1) регуляторы сроков схватывания (ускорители и замедлители начала схватывания цемента);

2) ускорители твердения — повышающие начальную прочность цемента;

3) повышающие прочность — повышающие активность цемента в возрасте, установленном стандартами на продукцию для марочной прочности;

4) пластификаторы — снижающие водопотребность цемента.

3.3. Добавки, регулирующие специальные свойства цемента, подразделяют на:

1) водоудерживающие — повышающие седиментационную устойчивость цементного теста, снижающие водоотделение;

2) гидрофобизующие — повышающие устойчивость цемента к воздействию влаги воздуха;

3) регулирующие объемные (линейные) деформации цементного камня (расширение или усадку цемента);

4) регулирующие тепловыделение — снижающие или повышающие теплоту гидратации за установленный срок;

5) улучшающие декоративные свойства цементов — повышающие белизну, а также придающие или улучшающие цвет;

6) регулирующие плотность цементного теста — утяжеляющие и облегчающие;

7) регулирующие тампонажно-технические свойства цемента.

Основные эффекты действия добавок представлены в приложении А.

Приложение А
(справочное)

Основной эффект воздействия и критерий эффективности добавки

Основной эффект воздействия и критерий эффективности добавки

Компоненты вещественного состава

Снижение доли клинкера в цементе по сравнению с исходной, %:

— до 5 включительно — вспомогательные;

— 6 и выше — основные

Стандарты на цементы, методы испытаний цементов и добавок

Интенсификация процесса помола цемента. Сокращение продолжительности помола цемента до заданной дисперсности не менее чем на 10%

Регуляторы сроков схватывания

Ускорение или замедление схватывания цементов. Изменение сроков схватывания цемента не менее чем на 30% по сравнению с бездобавочным

Повышение прочности цементов в ранние сроки твердения не менее чем на 10% в возрасте 1, 2 или 3 сут

Повышение марочной прочности цементов. Для класса прочности (марки):

— 52,5 (500, 550, 600) — не менее 7%;

— 42,5 (400) — не менее 10%;

— 32,5 (300) — не менее 15%

Снижение нормальной густоты цемента не менее чем на 3%

Уменьшение водоотделения цементов не менее 10 отн. %

Повышение сохранности цемента, увеличение времени всасывания капли воды, нанесенной на поверхность цемента

Читайте так же:
Как развести цемент для бетонирования дорожки

Регулирующие объемные (линейные) деформации цементного камня

Снижение усадки, расширение цементного камня в заданных пределах при его твердении. Изменение линейных деформаций не менее 50 отн. %

Любой метод измерения линейных деформаций с точностью 0,1 мм/м

Снижение или повышение тепловыделения при твердении цементов в течение 7 сут не менее 10 отн. %

Улучшающие декоративные свойства цементов

Улучшение цвета, повышение сортности цемента путем повышения его белизны

Регулирующие плотность цементного теста

Повышение или снижение плотности цементного раствора в необходимых пределах

Регулирующие тампонажно-технические свойства цементов

Обеспечение необходимых тампонажно-технических свойств в соответствии с нормативной документацией

Приложение А (Измененная редакция, Изм. N 1).

Приложение Б
(справочное)

Термины и определения

В настоящем стандарте применены термины по ГОСТ 30515, а также следующие термины с соответствующими определениями:

3.1 критерий эффективности добавки: Величина показателя (или показателей) основного эффекта действия, характеризующая эффективность добавки.

3.2 оптимальная дозировка добавки: Дозировка добавки, позволяющая получать технологический эффект без снижения (или с допустимым уровнем снижения) других показателей качества цемента.

3.3 стандартная прочность: Прочность на сжатие образцов из стандартного цементного раствора, изготовленных и испытанных в стандартных условиях в максимальные сроки, установленные нормативным документом.

Приложение Б (Введено дополнительно, Изм. N 1).

Редакция документа с учетом
изменений и дополнений подготовлена
АО «Кодекс»

Тампонажный состав для цементирования горизонтальных стволов скважин

Владельцы патента RU 2508307:

Изобретение относится к нефтегазодобывающей промышленности, а именно к строительству скважин, в основном к цементированию эксплуатационных колонн, расположенных в наклонно-направленной (с отклонением от вертикали более 45°) и горизонтальной части ствола. Технический результат заключается в повышении эффективности состава при цементировании скважин, в том числе пологих и горизонтальных, с малыми кольцевыми зазорами, за счет повышения прочностных показателей при малых концентрациях минеральной добавки при одновременном сохранении низких фильтрационных свойств, отсутствии водоотделения и обеспечении технологически требуемых сроков схватывания. Тампонажный состав для цементирования горизонтальных стволов скважин, включающий тампонажный портландцемент ПТЦ- IG-CC-1, понизитель фильтрации ГИДРОЦЕМ, суперпластификатор — полиэфиркарбоксилат Melflux F или сульфированный меламинформальдегид ЦЕМПЛАСТ МФ, пеногаситель ПОЛИЦЕМ ДФ, ускоритель сроков схватывания — хлорид кальция и воду, отличающийся тем, что он дополнительно содержит минеральную добавку — метакаолин, или Мета-Микс-1, или CONMIX SF1, или MIKRODUR, при следующем соотношении компонентов, мас.%: ПЦТ IG-CC-1 93,35-98,9, ГИДРОЦЕМ 0,1-0,5, указанный суперпластификатор 0,05-0,3, ПОЛИЦЕМ ДФ 0,1-0,3, указанная минеральная добавка 0,5-1,0, хлорид кальция 0,1-2,0, вода до водоцементного отношения 0,45-0,55. 2 табл.

Изобретение относится к нефтегазодобывающей промышленности, а именно к строительству скважин, в основном к цементированию эксплуатационных колонн расположенных в наклонно-направленной (с отклонением от вертикали более 45°) и горизонтальной части ствола.

К числу таких скважин относятся и боковые стволы (с наклонно-направленной или горизонтальной частью ствола), строительство которых ведется из фонда ранее пробуренных скважин. Соотношение диаметров ствола и хвостовика в таких скважинах определяет наличие уменьшенных кольцевых зазоров.

Особенность цементирования скважин в условиях уменьшенных кольцевых зазоров заключается в том, что к свойствам тампонажного раствора предъявляются особые требования. При уменьшенных кольцевых зазорах важное значение в процессе цементирования имеет реология цементного раствора. Если в процессе цементирования скважин с нормальными кольцевыми зазорами (более 20 мм) реологические характеристики цементного раствора незначительно влияют на гидравлические потери, возникающие при цементировании, то при уменьшенных кольцевых зазорах высокие реологические показатели свойств цементного раствора могут привести к аварийной ситуации в процессе цементирования.

Важно в процессе цементирования скважин с уменьшенными кольцевыми зазорами иметь такие реологические показатели тампонажного раствора, которые обеспечивают безаварийность процесса цементирования и проникновение тампонажного раствора в труднодоступные узкие зазоры между стенкой скважины и обсадной колонной.

Регулирование реологических свойств тампонажного состава осложняется тем, что при цементировании эксплуатационных колонн изолируется продуктивный пласт. Одной из главных задач при этом является сохранение продуктивного пласта от негативного влияния на него фильтрата цементного раствора. Поэтому тампонажные составы обрабатываются понизителями фильтрации. Снижение фильтрации цементных растворов в большинстве случаев производится путем загущения жидкой фазы цементного раствора, что неизбежно приводит к загущению и самого цементного раствора, а, следовательно, и к повышению реологических показателей.

Наличие водоотделения приводит к тому, что после схватывания цемента у верхней стенки скважины на контакте с цементным кольцом образуется микрозазор, который впоследствии может стать причиной межпластового перетока.

Другой причиной образования микрозазоров в цементном кольце может стать явление контракции, характерное для цемента. Чтобы скомпенсировать это явление в цемент добавляют различные расширяющие добавки, применение которых, в зависимости от активности и концентрации могут компенсировать усадочные явления, сделать цементный камень расширяющимся или напрягающимся. Основной целью расширяющей добавки в тампонажных составах для цементирования является компенсация усадочных явлений и усиление плотности контакта цементного камня с вмещающими поверхностями.

Кроме расширяющей добавки улучшить контакт при сцеплении цементного камня с вмещающими поверхностями возможно за счет применения адгезионных добавок, которые усиливают плотность контакта цементного камня с вмещающими поверхностями за счет химического взаимодействия контактирующих поверхностей.

При цементировании скважин, имеющих уменьшенные кольцевые зазоры особенно актуальна оптимизация вышеперечисленных свойств тампонажных составов, которые, в конечном счете, влияют на качество формируемого цементного кольца и на его контакт с вмещающими поверхностями.

Известен тампонажный раствор для цементирования нефтяных и газовых скважин (Патент РФ №2386660), содержащий в масс.%: портландцемент 95; микрокремнезем конденсированный 5; и сверх 100: поливинилацетатную дисперсию 0,3-0,6, конденсированную сульфат спиртовую барду 0,2, полипропиленовое волокно длиной 6-12 мм, диаметром 14-18 мкм 0,05-0,1. Тампонажный раствор содержит воду до водоцементного отношения 0,38-0,42. Известный раствор обеспечивает повышение сопротивляемости цементного камня к ударным нагрузкам и повышение адгезии цементного камня к ограничивающим поверхностям.

Однако его недостатком является то, что он разработан для условий умеренных температур и испытывался при соответствующей температуре 75°C. Кроме того, известный раствор содержит замедлители схватывания, наличие которых удлиняет сроки схватывания в нормальных температурных условиях, что снижает его функциональные возможности. Кроме того, этот тампонажный раствор имеет низкую растекаемость и высокие реологические показатели, что является неприемлемым для цементирования малых кольцевых зазоров.

Также известен тампонажный состав для крепления пологих и горизонтальных скважин (Патент РФ №2256775), который является близким к предлагаемому изобретению по назначению. Задачей известного состава является комплексное решение проблемы качественного крепления пологих и горизонтальных скважин и разобщения пластов за счет подавления процесса седиментации и предотвращения связанного с ним осаждения твердой фазы на нижнюю стенку ствола и образования канала у верхней стенки путем повышения седиментационной устойчивости раствора до уровня, при котором значения параметра СР не превышают 79%, а также сохранения коллекторских свойств продуктивного пласта и защиты приствольной зоны от загрязнения фильтратом тампонажного раствора за счет снижения его водоотдачи при сохранении нормальных технологических параметров раствора, обеспечивающих его закачку и продавку в затрубное пространство. Известный тампонажный состав содержит тампонажный цемент, реагент-стабилизатор с функцией понизителя фильтарации, минеральную добавку — хлорид натрия или хлорид калия и воду.

Читайте так же:
Водоудерживающие добавки для цемента

Недостатком указанного известного тампонажного состава является то, что он разработан и испытывался для умеренных температурных условий, т.е 75°C, кроме того заявленный тампонажный состав имеет низкую растекаемость, что может создать проблемы при цементировании малых кольцевых зазоров.

Наиболее близким к предлагаемому техническому решению по совокупности признаков является расширяющийся тампонажный состав (патент РФ №2360949), содержащий в масс.%: портландцемент ПЦТ IG-CC-1 91,3-98,3; понизитель фильтрации ГИДРОЦЕМ 0,1-0,5; суперпластификатор — полиэфиркарбоксилат Melflux F или сульфированный меламинформальдегид ЦЕМПЛАСТ МФ 0,1-0,7; пеногаситель ПОЛИЦЕМ ДФ 0,1-0,3; ускоритель сроков схватывания — хлорид кальция 0,1-3,0; расширяющую добавку — окись алюминия и/или сульфоалюминат кальция 0,5-5,0; и воду до водоцементного отношения 0,47-0,78.

Недостатком известного состава является недостаточные прочностные свойства при повышенном содержании суперпластификатора.

Технический результат, достигаемый предлагаемым изобретением, заключается в повышении эффективности состава при цементировании скважин, в том числе пологих и горизонтальных, с малыми кольцевыми зазорами за счет повышения прочностных показателей при малых концентрациях минеральной добавки и суперпластификатора, при одновременном сохранении низких реологических и фильтрационных свойств, отсутствия водоотделения, и обеспечении технологически требуемых сроков схватывания.

Указанный технический результат достигается предлагаемым тампонажным составом для цементирования горизонтальных стволов скважин, включающим тампонажный портландцемент ПЦТ IG-CC-1, понизитель фильтрации ГИДРОЦЕМ, суперпластификатор — полиэфиркарбоксилат Melflux F или сульфированный меламинформальдегид ЦЕМПЛАСТ МФ, пеногаситель ПОЛИЦЕМ ДФ, ускоритель сроков схватывания — хлорид кальция и воду, отличающийся тем, что он дополнительно содержит минеральную добавку: метакоалин, или Мета-Микс-1, или CONMIX SF1, или MIKRODUR, при следующем соотношении компонентов, мас.%:

цемент ПЦТ IG-CC-195,9-98,9
понизитель фильтрации ГИДРОЦЕМ0,1-0,5
указанный суперпластификатор0,05-0,3
пеногаситель ПОЛИЦЕМ ДФ0,1-0,3
указанная минеральная добавка0,5-1,0
хлорид кальция0,1-2,0
вода до водоцементного отношения0,45-0,55

Применение предлагаемого тампонажного состава позволит цементировать скважины с малыми кольцевыми зазорами без избыточных гидродинамических потерь, что снизит гидравлические давления в процессе цементирования, а соответственно давления на продуктивный пласт при цементировании эксплуатационных колонн. Кроме того, это обеспечит проникновение состава в узкие зазоры между стенкой скважины и обсадной (эксплуатационной) колонной. Достижение указанного результата обеспечивается низкими реологическими характеристиками заявляемого тампонажного состава: пластическая вязкость тампонажного состава не превышает 180 мПа*с; динамическое напряжение сдвига не более 139 дПа, даже при более низкой концентрации суперпластификатора по сравнению с прототипом.

В интервале продуктивного пласта применение предлагаемого тампонажного состава с низкой фильтрацией предохранит продуктивный пласт от воздействия на него фильтрата цементного раствора. Отсутствие водоотделения позволит исключить формирование флюидопроводящего канала между стенкой скважины и породой в период формирования цементного камня.

Совокупность придаваемых заявляемому тампонажному составу свойств позволит обеспечить качественное и эффективное цементирование скважин с осложняющими процесс цементирования условиями, а именно, пологих и горизонтальных скважин с малыми кольцевыми зазорами.

Достижение указанного технического результата обеспечивается за счет определенного подбора компонентов (качественного и количественного) в заявляемом тампонажном составе, т.е. этот результат носит синергетический характер.

В качестве основы для получения данного тампонажного состава используется цемент марки ПЦТ IG-CC-1. Преимущества использования этого типа цемента: хорошая совместимость с различными добавками; высокие прочностные свойства; низкая проницаемость цементного камня; сульфатостойкость.

Введение в тампонажный состав минеральной добавки в совокупности с другими компонентами позволит при заявляемом их количественном соотношении, за счет изменения структуры цементного камня: улучшить адгезионные свойства; снизить фильтрацию цементного раствора; исключить водоотдачу; уменьшить седиментационные явления; улучшить реологические свойства. Основные эффекты от введения минеральной добавки в тампонажный состав — это микронаполняющий и пуццоланический (химическая активность по отношению к Са(ОН)2).

В качестве мелкодисперсной минеральной добавки в предлагаемом составе также могут быть использованы метакоалин, или Мета-Микс-1, или CONMIX SF1, или вяжущий материал очень мелкой дисперсности: MIKRODUR.

Метакоалин представляет собой дегидроксилированную форму глинистого минерала каолинита, он формируется, когда чистый каолин нагревают до температур между 1,200 F и 1,750 F (650°C — 900°C). Такая обработка, также известная как кальцинирование, коренным образом меняет структуру частиц, создавая высоко реактивный аморфный пуццолан. Метакаолин поставляется в двух видах: в виде клинкера и в виде порошка.

Модификатор МетаМикс-1 представляет собой высокоактивный минеральный комплекс (смесь метакаолина и микрокремнезема), активным действующим компонентом которого является метакоалин, имеющий пуццоланическую активность (способность связывания извести) на уровне 1050-1100 мг/г. Благодаря своей глинистой природе, Метамикс-1 улучшает пластичность и связность растворных и бетонных смесей.

CONMIX SF1 высокоэффективная сухая микрокремнеземистая присадка к бетону. Это сверхтонкая сферическая суперактивная минеральная присадка, соответствующая стандарту ASTM С1240, созданная на основе кремнезема. Мельчайший размер частиц CONMIX SF1 позволяет им заполнить матрицу цемента, тем самым уплотняя цементный камень. Указанную микрокремнеземистую присадку получают с помощью измельчения кварца высокой чистоты с коксом в электродуговых печах в процессе производства силиконовых и ферросиликоновых сплавов. Основным компонентом его является диоксид кремния аморфной модификации. Он является высокоэффективным природным пуццолановым материалом. Это обусловлено тем, что микрокремнезем очень тонко измельчен, и имеет высокую концентрацию кремнезема. Микрокремнезем в присутствии влаги вступает во взаимодействие с цементом с образованием гидросиликата кальция, отличающегося более развитой пространственной структурой.

MIKRODUR оказывает влияние на прочностные свойства цементного камня. Диаметр зерен MIKRODUR в 6-10 раз меньше частиц самого цементного клинкера. Благодаря малому размеру (диаметр зерен Изобретение относится к области добычи углеводородов и может быть применено для интенсификации притока флюида к скважине за счет образования трещин в продуктивном пласте.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector