Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Прочность цемента при высоких температурах

Влияние температуры на прочность бетона

Мы уже видели, что повышение температуры при твердении ускоряет химические реакции гидратации и таким образом благотворно воздействует на рост прочности бетона в ранние сроки без каких-либо отрицательных последствий, влияющих на последующую прочность. Однако более высокая температура при укладке и схватывании, хотя и повышает очень раннюю прочность, может неблагоприятно повлиять на прочность в возрасте от 7 суток и больше. Это объясняется тем, что при быстрой начальной гидратации образуются продукты с более плохой физической структурой, возможно более пористой, поэтому значительная часть пор всегда остается незаполненной. Из отношения гель: пространство вытекает, что это может привести к более низкой прочности по сравнению с менее пористым цементным камнем, хотя в нем происходила медленная гидратация, в конечном счете в таком цементном камне достигается высокое отношение гель : пространство.

Были также проведены опыты на бетонах, хранившихся в воде при различных температурах в течение 28 суток, а затем при температуре 22 8° С Как и в опытах Прайса, высокая температура привела к высокой прочности в течение первых нескольких суток после изготовления но затем в возрасте от одной до четырех недель положение существенно изменилось. Образцы, выдержанные до 28 суток при температурах от 4,4 до 22,8° С, показали более высокую прочность по сравнению с образцами, выдержанными при температуре от 32,2 до 43 3° С Для последних снижение прочности было тем больше, чем выше была температура; в интервале более низких температур имеется оптимальная, при которой бетон приобретает самую высокую прочность. Интересно отметить, что даже бетон, изготовленный при 4,4° С и хранившийся при низкой температуре (—3,9° С) в течение четырех недель, а затем при 23,9° С после трех месяцев, прочнее такого же бетона, хранившегося при постоянной температуре 23,9° С. На рис. 5.31 показаны типичные кривые для бетона с расходом портландцемента 305 кг/м при 4,5% вовлеченного воздуха. Подобное поведение наблюдалось, когда использовался быстротвердеющий портландцемент и модифицированный цемент. В бетонах с добавкой хлористого кальция вредное воздействие высокой температуры в период схватывания ослабляется.

Повышение прочности, вызванное добавлением хлористого кальция, зависит от температуры бетона и пропорционально возрастает с понижением температур. Например, при 12° С добавление 2% повышает односуточную прочность на 140%, а относительное увеличение в той же смеси при 48,9° С дает только 50%. Подобного поведения следовало ожидать, поскольку степень гидратации при более высоких температурах выше даже без катализатора, так что для действия остается мало возможности. Хлористый кальций обычно употребляется только при нормальных или низких температурах.

Опыты Клигера показывают, что существует оптимальная температура в раннем возрасте бетона, при которой обеспечивается наивысшая прочность в желаемом возрасте. Для бетона, изготовленного в лаборатории из обычного или модифицированного цемента, оптимальная температура примерно 12,8° С, для быстротвердеющего портландского цемента — около 4,4° С. Не следует забывать, однако, что после начального периода схватывания и твердения влияние температуры в определенном интервале соответствует правилу твердения: более высокая температура способствует росту прочности.

Все описанные до сих пор опыты проводили в лаборатории, и, по-видимому, режим на строительной площадке в жарком климате не может быть таким же. Существуют некоторые дополнительные факторы воздействия: влажность окружающей среды, прямая радиация солнца, скорость ветра и метод ухода. Следует напомнить также, что качество бетона зависит от его температуры, а не от температуры окружающей атмосферы. К тому же уход путем орошения в ветреную погоду приводит к потере тепла в результате испарения, так что температура бетона будет ниже, чем при применении изолирующих пленок. Шалон установила, что испарение непосредственно после изготовления благоприятно, возможно, потому, что вода испаряется из бетона в то время, когда капилляры еще могут разрушаться, что уменьшает эффективно водоцементное отношение. Если, однако, испарение приведет к высыханию поверхности, то может возникнуть пластическая усадка и образование трещин.

Опыты показали, что в жарких и сухих условиях, например в пустыне, прочность бетона уменьшается с увеличением температуры до критического значения примерно при 30° С, но между 30 и 45° С может быть незначительная упругая деформация или снижения прочности не будет. Подобное поведение наблюдалось при применении бетона без вовлеченного воздуха, твердевшего при относительной влажности от 20 до 70%. Возможно, что присутствие или отсутствие вовлеченного воздуха обусловили, по крайней мере частично, различия между результатами Клигера и Шалон. По-видимому, мы еще не знаем всех факторов, относящихся к данной проблеме, и прежде, чем начать строительство в новом климате, следует провести тщательные опыты на строительной площадке.

В целом, однако, можно ожидать, что бетон, укладываемый летом, будет иметь более низкую прочность, чем аналогичный бетон, изготовленный зимой. И действительно, на многих строительных площадках прочность контрольных образцов была ниже в жаркую погоду, хотя после раскрытия форм в возрасте 24 ч они выдерживались в воде при 17,8° С. В тропических странах также наблюдалась подобная более низкая прочность бетона.

Критическая прочность бетона

Требования государственных стандартов к прочности бетона

Государство устанавливает способы оценки и контроля прочности бетона и порядок маркировки материала по результатам проведённых испытаний. ГОСТом 10180-2012 определены методы испытания прочности бетона, как оценка поведения контрольных образцов при воздействии на них силы способом:

  • сжатия;
  • осевого растяжения;
  • растяжения на изгибе;
  • растяжения на раскалывание.
Читайте так же:
Как можно сделать фундамент без цемента

ГОСТом 18105-2010 даны определения фактической, нормируемой и требуемой прочности бетона. Эти и другие Госстандарты, СНиПы и технические регламенты заводов-изготовителей составляют нормативную базу, регулирующую порядок производства, методы испытаний и требования к прочности бетонных конструкций.

Как происходит набор прочности бетона?

Бетонный раствор через определенное время превращается в монолитную конструкцию со свойствами искусственного камня. Это происходит за счёт реакции гидратации строительных смесей. Кинетика набора прочности определяет сколько застывает бетон и представляет собой процесс взаимодействия минералов в составе цемента и зависит от многих факторов. В первую очередь необходимо отметить воздействие температуры и влажности воздуха на физико-химические процессы в строительном растворе. Чем выше температура окружающей среды, тем быстрее бетон набирает свою прочность, и наоборот — с понижением температуры процесс замедляется вплоть до полного прекращения застывания бетона при ноле градусов. При ожидаемой низкой температуре воздуха в бетонировании конструкций применяется электропрогрев бетона. При электроподогреве бетона не допускается замораживание свежеуложенного бетонного раствора в случае, если температура воздуха опустилась до 5 градусов С и ниже.

Строительные смеси с противоморозными добавками напрямую улучшают свойства бетонного раствора для ускорения процесса набора прочности при низких температурах воздуха.

Зависимость набора прочности от температуры


Смотреть галерею

Если вы собираетесь использовать раствор в строительстве, то вам должен быть известен график зависимости набора прочности бетона от температуры. Как было упомянуто выше, схватывание происходит в течение первых нескольких суток после затворения раствора. А вот для завершения первой стадии будет необходимо время, на которое влияет температура внешней среды.

Например, когда столбик термометра удерживается на отметке в 20 °С и выше, на схватывание уходит час. Процесс начинается через 2 часа после того, как смесь будет приготовлена, а завершится через 3 часа. Время и завершение стадии при похолодании сдвинется, для схватывания будет необходимо больше суток. Когда столбик термометра удерживается на нулевой отметке, процесс начинается через 6-10 часов после приготовления раствора, а длится он до 20 часов после заливки.

Важно знать ещё и об уменьшении вязкости. На первой стадии раствор остается подвижным. В этот период на него можно оказывать механическое воздействие, придавая конструкции требуемую форму. Этап схватывания можно продлить, используя механизм тиксотропии, оказывая механическое воздействие на смесь. Перемешивание раствора в бетономешалке обеспечивает продление первой стадии.

График набора прочности

Наглядное представление о том, сколько сохнет бетон, дают графики набора прочности бетона. В зависимости от температуры воздуха и марки и бетона определяется время застывания и достижения бетоном безопасной и требуемой прочности. Построенные графики твердения позволяют сделать вывод о неравномерности процесса высыхания бетонной смеси. Так, в первые пять дней жизни раствора происходит самый быстрый набор прочности, этот период называют «выдерживанием» бетона. Прочность бетона на 7 сутки составляет 60-70 % от его марочной прочности, а к 100 % этот показатель приближается на 28-е сутки после приготовления раствора.

Срок набора прочности бетоном напрямую зависит от его класса, чем выше качество цемента в составе, тем выше марка бетона. Для низкомарочных бетонов большее значение имеет процент критической прочности. Данная закономерность отражена в следующей таблице:

Марка бетона по прочности на сжатиеПорог критической прочности в % от марочной
М15-15050
М200-30040
М400-50030

Испытание прочности бетона на сжатие

Испытание дает представление обо всех характеристиках бетона. По этому единственному испытанию судят, правильно ли выполнено бетонирование или нет.

Прочность бетона на сжатие для общего строительства варьируется от 15 МПа (1000 кг на квадратный дюйм) до 30 МПа 2000 кг на квадратный дюйм) и выше в коммерческих и промышленных структурах.

Прочность бетона на сжатие зависит от многих факторов, таких как водоцементное соотношение, прочность цемента, качество бетонного материала, контроль качества при производстве бетона и т. д.

Испытание на прочность на сжатие проводится либо на кубе, либо на цилиндре.

Различные стандартные коды рекомендуют бетонный цилиндр или бетонный куб в качестве стандартного образца для испытания.

Стадии набора прочности бетона

Весь процесс затвердевания бетонного камня можно разделить на следующие этапы:

Схватывание — длительность этой стадии зависит от температуры среды:

  • при нулевой температуре воздуха схватывание начинается через 8 часов после приготовления бетонного раствора и продолжается 15-20 часов;
  • при 20 градусах С начало схватывание приходится на второй час жизни раствора и длится в среднем ещё один час.

Чем выше температура воздуха, тем быстрее начнётся и закончится этап схватывания строительной смеси. Кроме того, свою роль здесь играет и марка бетона. Ниже приведено несколько примеров подобного влияния:

  • бетон марки М200 — схватывание длится 2-2,5 часа;
  • бетон марки М300 — 1,5-2 часа;
  • бетон марки М400 — в среднем 1-1,5 часа.

Уже во время транспортировки раствора начинается стадия схватывания, но за счёт постоянного механического воздействия при его перемешивании и тиксотропии, продолжительность его значительно ускоряется.

Читайте так же:
Глиноземистый цемент это алюминатный цемент

Твердение — вторая стадия набора прочности бетона. Отвердевание бетона происходит благодаря механизму гидратации цемента, проще говоря, происходит сушка бетона за счёт испарения влаги.

Минералы в составе цемента обладают разной степенью гидратации. Раннюю прочность цемента обеспечивает аллит — это самый реакционноспособный минерал. Другой минерал — беллит — не теряет способности к гидратации в течение нескольких десятков лет. То есть, теоретически стадия твердения бетона может продолжаться ещё много лет уже по завершении строительства. В практической работе строители отводят примерно месяц на стадию отвердения.

Превращение бетонного раствора в прочную монолитную конструкцию зависит от комплекса факторов воздействия среды и качества исходных материалов. Контроль прочности бетона производится на всех этапах: от выбора строительных смесей до оценки прочности уже возведённых конструкций механическим и ультразвуковым методом

Возврат к списку

Уточните стоимость доставки бетона до вашего объекта

у нашего менеджера по телефону или через форму запроса

Что влияет на прочность?

На показатель оказывают влияние следующие факторы:

  • количество цемента;
  • качество смешивания всех компонентов бетонного раствора;
  • температура;
  • активность цемента;
  • влажность;
  • пропорции цемента и воды;
  • качество всех компонентов;
  • плотность.

Также он зависит количества времени, которое прошло с момента заливки, и использовалось ли повторное вибрирование раствора. Наибольшее влияние оказывает активность цемента: чем она выше, тем больше получится прочность.

От количества цемента в смеси также зависит прочность. При повышенном содержании он позволяет увеличить ее. Если же использовать недостаточное количество цемента, то свойства конструкции заметно снижаются. Увеличивается этот показатель лишь до достижения определенного объема цемента. Если засыпать больше нормы, то бетон может стать слишком ползучим и дать сильную усадку.

В растворе не должно быть слишком много воды, так как это приводит к появлению в нем большого количества пор. От качества и свойств всех компонентов напрямую зависит прочность. Если для замешивания использовались мелкозернистые или глинистые наполнители, то она снизится. Поэтому рекомендуется подбирать компоненты с крупными фракциями, так как они значительно лучше скрепляются с цементом.

От однородности замешанной смеси и применения виброуплотнения зависит плотность бетона, а от нее – прочность. Чем он плотнее, тем лучше скрепились между собой частицы всех компонентов.

Способы определения прочности

По прочности на сжатие узнаются эксплуатационные характеристики сооружения и возможные на него нагрузки. Вычисляется этот показатель в лабораториях на специальном оборудовании. Используются контрольные образцы, сделанные из того же раствора, что и отстроенное сооружение.

Также вычисляют ее на территории строящегося объекта, узнать можно разрушаемым или неразрушаемым способами. В первом случае либо разрушается сделанная заранее контрольная проба в виде куба со сторонами 15 см, либо с помощью бура из конструкции берется образец в виде цилиндра. Бетон устанавливается в испытательный пресс, где на него оказывается постоянное и непрерывное давление. Его увеличивают до тех пор, пока проба не начнет разрушаться. Показатель, полученный во время критической нагрузки, применяется для определения прочности. Этот метод разрушения пробы является самым точным.

Для проверки бетона неразрушаемым способом используется специальное оборудование. В зависимости от типа приборов он делится на следующие:

  • ультразвуковой;
  • ударный;
  • частичное разрушение.

При частичном разрушении на бетон оказывают механическое воздействие, из-за чего он частично повреждается. Провести проверку прочности в МПа этим методом можно несколькими способами:

  • отрывом;
  • скалыванием с отрывом;
  • скалыванием.

В первом случае к бетону на клей крепится диск из металла, после чего его отрывают. То усилие, которое потребовалось для его отрыва, и используется для вычисления.

Метод скалывания – разрушение скользящим воздействием со стороны ребра всего сооружения. В момент разрушения регистрируется значение приложенного давления на конструкцию.

Второй способ – скалывание с отрывом – показывает наилучшую точность по сравнению с отрывом или скалыванием. Принцип действия: в бетоне закрепляются анкера, которые впоследствии отрываются от него.

Определение прочности бетона ударным методом возможно следующими путями:

  • ударный импульс;
  • отскок;
  • пластическая деформация.

В первом случае фиксируется количество энергии, создаваемой в момент удара по плоскости. Во втором способе определяется величина отскока ударника. При вычислении методом пластической деформации используются приборы, на конце которых расположены штампы в виде шаров или дисков. Ими ударяют о бетон. По глубине вмятины вычисляются свойства поверхности.

Метод с помощью ультразвуковых волн не является точным, так как результат получается с большими погрешностями.

Набор прочности бетона

Набор прочности бетона в среднем происходит в течение 28 суток, а полный срок твердения может составлять 3 года. Во время застывания цемент, реагируя с водой, образует монолитные соединения, которые по свойствам похожи на искусственный камень.

Скорость и процент набора прочности бетона при нормальной температуре неравномерная. Например, М300 через 3 дня набирает 50% от заявленной прочности , через 2 недели — 90%, а на 28 день застывает полностью.

Таблица времени набора прочности по классу и марке бетона:

График набора прочности бетона В15-В25 на сжатие на портландцементе М400– М500:

Читайте так же:
Как получить цементный раствор нужной марки

Процесс вызревания включает 2 стадии:

  1. Начальная — схватывание , которое зависит от температуры воздуха и протекает от 20 минут до 20 часов. Дольше всего материал схватывается при температуре 0°С, а минусовые значения отрицательно сказываются на его прочности после оттаивания.
  2. Завершающая — твердение, после окончания стадии бетон может нагружаться. Оптимальный температурный коридор —18–20°С, влажность примерно 100%. В первые 3 суток набор бетона по прочности составляет 30%, в первые 7–14 суток — до 70 % от марочной, а через 3 месяца — 90 %. Бетон может набирать прочность еще в течение трех лет.

Добавки в бетон для повышения прочности

Если работы проводятся в условиях слишком высоких или слишком низких температур, необходимо использовать добавки для твердения бетона, уменьшения или увеличения скорости схватывания, повышения пластичности и придания других свойств . Чтобы обеспечить высокое качества бетона в зимнее время, нужно поддерживать оптимальный режима температуры и влажности с помощью электрообогрева, обогрева паром и обустройства «термоса».

  • антифризы — снижают точку замерзания жидкости, увеличивают схватываемость, не вызывают коррозию арматуры, безопасны для людей, употребляются в количестве 1%–2% в зависимости от температуры воздуха;
  • сульфаты — ускоряют твердение бетона благодаря активному выделению тепла, во время замешивания компоненты равномерно распределяются;
  • ускорители твердения бетона — помогают лучше растворять силикатные компоненты цемента, которые при гидратации образуют соли, снижающие температуру замерзания воды.

Противоморозные добавки

Данные присадки увеличивают жидкую фазу, во время которой происходит процесс гидратации и созревания материала. Если вода в порах замерзнет, химические реакции соединения цемента с водой не пройдут как положено, а после оттаивания компоненты вместо того, чтобы соединиться в камень, рассыпятся. Нужно учитывать, что набор прочности бетона с противоморозными добавками происходит медленнее по сравнению со скоростью твердения в нормальных условиях. Прочность до замерзания составляет 30% от заявленной, остальные 70% материал набирает после оттаивания.

Выбор противоморозных добавок и количество зависят от вида конструкции, степени армирования, степени агрессивности среды, наличия блуждающих токов, температуры воздуха, так как некоторые виды приводят к коррозии металлических элементов, снижению прочности сцепления бетона с арматурой, появлению высолов на поверхности.

Модификаторы

Модификаторы используют, когда нужно повысить прочность на 1-2 марки, долговечность, устойчивость к низким или высоким температурам, химическим веществам. Они снижают проницаемость бетона, улучшают подвижность раствора на стадии заливки. Благодаря им он ложится равномерно,проникая во все щели и углубления. Для разных сооружений и конструкций используют свои модификаторы — для колодцев, бассейнов одни, а для фасадов или стяжки полов другие.

Пластификаторы

Пластификаторы придают раствору пластичность, увеличивают подвижность, адгезию, разжижают, при этом не снижая скорость схватывания и прочность. Присадки позволяют сократить количество воды, что увеличивает плотность, стойкость к морозам, уменьшает усадочные деформации. Добавки позволяют заполнить бетонной смесью труднодоступные места при заливке сложных конструкций. Их вводят 0,1–1,2% от общего объема смеси. Срок их действия составляет 2–3 часа.

Методы определения прочности бетона

Разрушающие. Испытание прочности бетона на сжатие проводится на контрольных образцах или на образцах из застывшего бетонного монолита. При этом контрольные образцы помещают в в одинаковые с реальной конструкцией условия. Данные методы наиболее точные.

Неразрушающие косвенные. С помощью ультразвукового прибора для измерения , методов упругого отскока и ударного импульса прочность бетона оценивают косвенно, а потом проводят более точные вычисления. Данные методы дают погрешность до 50%, их применяют вместе с прямыми.

Неразрушающие прямые. Включают 2 метода. Первый — когда производят отрыв заделанного в бетон металлического анкера и измеряют нагрузку с помощью создаваемой при помощи измерителя прочности. Второй — когда измеряют усилие для скалывания участка ребра бетонной конструкции.

Обзор жаростойких цементных смесей

К огнеупорным видам цемента относят глиноземистые и высокоглиноземистые составы, выдерживающие нагрев до 1700 °C без потерь прочности. Отличительными свойствами таких материалов являются повышенная скорость схватывания и застывания, стойкость к сульфатам, агрессивным средам и коррозии, улучшение прочностных характеристик при воздействии высоких температур и выделение большой доли тепла на начальном этапе гидратации. Основная сфера применения огнеупорных марок – промышленное строительство, в частных целях они используются при кладке печей или каминов или изготовлении штучных изделий.

Особенности и характеристики

Материал представляет собой тонко помолотый порошок (остаток на сите №008 не превышает 10 %), клинкер получают путем спекания или плавления. Глиноземистый цемент имеет серый или темно-коричневый цвет (влияет марка), высокоглиноземистый – белый или светло-серый. Плотность варьируется в пределах 2,8-3,2 г/см 2 , после застывания растворы имеют низкопористую структуру. Точный состав зависит от вида, но в среднем итоговое содержание глиноземов в марках с огнеупорными свойствами достигает не менее 60%, оксидов кальция – 35-40, других веществ – не превышает 3-5.

К основным рабочим характеристикам относят:

  • Прочность на сжатие. Точная величина зависит от разновидности, но стандартный диапазон для жаростойкого цемента составляет 25-60 МПа, такое значение достигается на 1-3 сутки.
  • Сопротивление агрессивным средам. Это объясняется способностью к выделению гидроксидов алюминия в процессе гидратации и обволакивания им частиц раствора. Бетоны на основе такого цемента устойчивы к сульфатам, воздействию минеральных вод и ряда кислот. К разрушающим структуру веществам относят уксусную кислоту, гидроксиды и карбонаты щелочей.
  • Ускоренные сроки схватывания, начальное время затвердевание варьируется в пределах 30-60 мин, окончательное – 6,5-12 ч.
  • Тепловыделение: до 70 % от общей величины в процессе гидратация за первые сутки. Это свойство объясняет востребованность при зимнем бетонировании.
  • Огнеупорность, в среднем – 1700 °C. Марки с более высокой термостойкостью встречаются редко и практически не используются в частном строительстве.
Читайте так же:
Какая порода для цемента

Отличия огнеупорного цемента от других видов

Разный состав клинкера у портландцемента и жаростойких разновидностей определяет разницу в свойствах и условиях эксплуатации.

Наименование характеристикиПортландцементГП и ВГЦ
Начало схватыванияНе менее 45 минОт 30 минут до 1 часа
Огнестойкость бетона250 °CОт 1100 и выше, точное значение зависит от марки и пропорций
Марочная прочность28 суток72 часа
Тепловыделение за первые сутки в % от общей величины15-2070
Сохранность прочностных свойствОдинакова: по истечении 30 суток при эксплуатации в воздушно-влажностных условиях теряют до 20 %

Отличия от портландцемента заметны еще на стадии затвердевания: огнеупорные составы набирают основную прочность в течении первых суток, рекомендуемая среда при этом – повышенная влажность, не выше +30 °C. Глиноземные марки теряют до 30 % устойчивости к сжатию в случае длительного воздействия высоких температур на начальной стадии гидратации, поэтому изделия не советуется пропаривать или подвергать автоклавной обработке (существуют специализированные марки, для которых оно действует наоборот).

К положительным отличиям от портландцемента относят повышенную плотность цементного камня, лучшую морозостойкость, хорошую устойчивость к агрессивным средам и коррозии. Обратной стороной является разрушение под воздействием щелочных растворов, жаростойкие глиноземные виды не рекомендуют смешивать с известью, гипсом или самим ПЦ. Последним фактором служит цена – у огнеупорных видов она в разы больше, чем у портландцемента (при равной марочной прочности ПЦ обходится как минимум в 3 раза дешевле).

Основными потребителями являются предприятия металлургического и топливно-энергетического комплекса (футеровка печей и сталеплавильных ковшей, теплоизоляция котлов, дымоходы). Помимо огнеупорности эти цементы ценятся за ускоренный набор прочности и применяются при ведении ремонтных и восстановительных работ, строительстве подземных сооружений.

Они используются в качестве основных ингредиентов при изготовлении готовых жаростойких составов и клеев (соединительных, обмазочных, отливочных), их добавляют при производстве ячеистых бетонов и мелкоштучных кладочных изделий с высокой прочностью. Благодаря значительному тепловыделению на начальной стадии гидратации они востребованы при проведении бетонирования в зимнее время (допустимая температура – до -10 °C) и при необходимости замеса безусадочных или расширяющихся смесей.

Материал реализуется в мешках и навалом, срок сохранения активности ограничен 6 месяцами, дешевле всего его купить оптом. Продукцию выпускают как российские, так и зарубежные фирмы. К лучшим отечественным производителям огнеупоров относят Боровичский комбинат, Волховский Алюминий, Пашийский и Ключевский заводы. К ведущим зарубежным брендам: Secar (Франция), Gorkal (Польша), Cimsa Icidac (Турция), Ciment Fondu (Франция), среди готовых смесей для печей и каминов положительно оценивают Lakka Tulenkestava от финской фирмы Lakan Betoni, ее советуют купить при необходимости отливки жаростойких изделий, постоянно эксплуатируемых при температуре около 1300 °C.

Прочный бетон и химия — кратко для самоделкиных

Теория и химия бетона являются важными составляющими в получении самоделкиными необходимых знаний с целью осознанного применения на практике точных приемов и методов получения заданных свойств пластичного бетона.

С О Д Е Р Ж А Н И Е

  1. Точность в составе смеси и технологии — прочный пластичный бетон.
  2. Химия бетона — основа понятия процессов.
  3. Вода в цементной смеси.
  4. Химический состав цемента.
  5. Влияние температуры на скорость твердения и прочность бетона.

Точность в составе смеси и технологии — прочный пластичный бетон

К сожалению многие мастера до сих пор при подготовке цементной смеси для своих работ используют в качестве измерительного инструмента ведро и лопату. Может быть для изготовления самого простого классического бетона этого и достаточно.

В то же время, имея необходимые знания и опыт, но не выполняя при этом элементарные правила и не соблюдая технологическую дисциплину, можно получить плачевные результаты.

Вот один пример, как выглядят небрежно изготовленные тактильные бетонные плитки после первых зимних месяцев пешеходной эксплуатации.

Правильно подготовленная цементная смесь и точно выдержанная процедура замеса всегда позволяют получить прочный цементный камень.

Чтобы более ощутимо почувствовать эту необходимость, требуется хотя бы немного ознакомится с основами химических процессов, проходящих в цементной смеси в начальной стадии и в дальнейшем в химическом составе бетона.

Химия бетона — основа понятия процессов

Чтобы не загружать головы химическими уравнениями, объясняющими протекающие процессы при формировании цементного камня, можно рассмотреть только самые необходимые для общего понимания сути его образования.

Заводы производят различные виды цемента, но чаще всего для своих работ самоделкины используют наиболее распространенный портландцемент.

Другие цементы, например, глиноземистый или пуццолановый используются профессионалами там, где более эффективно проявляются особые свойства этих цементов: очень быстрое твердение и более прочный камень (через несколько суток достигается 100% марочная прочность).

Вернемся к нашему портландцементу.

Читайте так же:
Класс прочности цемента марки 400

При изготовлении садового декора химические добавки, которые ранее использовались в составе вместе с портландцементом, также обеспечивают достаточную прочность и скорость затвердевания пластичного бетона.

Почему же так важна точность в дозировке смеси для декоративного бетона?

Вода и химия бетона

Какое количество воды необходимо добавить в цементную смесь определяется водоцементным (В/Ц) или водовяжущим (В/В) отношением. При этом вяжущее = цемент + активные добавки, такие как микрокремнезем, зола и др.

Вода нужна для гидратации цемента (вяжущего).

Дозировка должна быть точной, иначе при избытке воды часть останется в бетоне и зимой будут проблемы.

А если воды не хватит, то не прореагировавший свободный оксид кальция (СаО или активная известь) с годами , постепенно превращаясь в известь-пушонку (Са(ОН)2), будет разрыхлять бетон и снижать его прочность.

Вот почему так важно не допустить испарения воды из твердеющего изделия, особенно в начальной его стадии (накрыть полиэтиленовой пленкой).

Наилучшие результаты можно получить при В/В = 0,35…0,4.

Если при этом для удобства в работе пластичности бетона не хватает, то необходимо увеличить количество пластификатора или сменить его на более эффективный с меньшей дозировкой.

Теперь кратко о химических веществах в цементе.

Химический состав цемента

Важной составляющей цемента является активная известь (СаО). Кроме свободного состояния оксид кальция (СаО) также входит в соединения, образующие: двух кальциевый силикат (С2S), трех кальциевый силикат (C3S), трех кальциевый алюминат (С3А) и четырех кальциевый алюмоферит (C4AF).

Эти химические вещества также взаимодействуют с водой, причем наиболее быстро это делает трех кальциевый алюминат (С3А) — за 3…5 минут.

При твердении бетона сначала образуется коллоид, затем — кристаллический сросток, далее — кристаллический каркас.

Чтобы процесс кристаллизации проходил равномерно, в цемент вводят гипс, количество которого должно точно соответствовать количеству С3А.

Поэтому, те самоделкины, которые хотят ускорить процесс затвердевания бетона путем введения гипса в состав смеси, нарушают этот баланс и снижают конечную прочность цементного камня.

Химия бетона — это очень точная наука.

В результате нескольких реакций с водой (и с учетом добавок, например, микрокремнезема) получается основа цементного камня — практически не растворимый гидросиликат кальция CaO⋅SiO2⋅nH2O.

Чем его больше, тем выше водостойкость и прочность бетона.

Отвердевший цементный камень — это неоднородная структура, представляющая собой смесь геля и кристаллических сростков.

Без дополнительных условий на третьи сутки прочность цементного камня составляет 40…50%, а через неделю — 60…70% от конечной.

Чем тоньше помол цемента, тем выше прочность и скорость твердения.

Естественно, что чем тоньше помол, тем выше удельная поверхность цемента. Она измеряется в см2/г.

Считается, что каждый ее прирост на 1000 см2/г повышает активность цемента на 20…25%.

В соответствии с помолом определяется марка цемента и его стоимость.

Влияние температуры на скорость твердения и прочность бетона

Одним из способов ускорения процесса изготовления бетонных изделий и увеличения оборачиваемости форм, используется термическое воздействие на бетонную отливку.

На крупных производствах применяют автоклавную обработку под давлением насыщенного пара 9…16 атм. при температуре около 200 градусов и выше. При этом можно получить марочную прочность уже через 4…6 часов после начала этого процесса.

Получается более прочный бетон , так как при высокой температуре Ca(OH)2 дополнительно связывается с SiO2 в прочное соединение (о котором упоминалось ранее) — гидросиликат кальция.

На малых предприятиях используют пропарку изделий при температуре 70…80 градусов, нагнетая горячий воздух под пленку, которой накрываются отливки.

Такая пропарка только ускоряет процесс твердения бетона (примерно в 2 раза). К тому же позволяет достичь 70% марочной прочности через одни сутки. Этого обычно достаточно, чтобы произвести распалубку и освободить формы для очередной заливки.

При естественной сушке в полиэтиленовой пленке такой результат можно получить только через неделю.

В работах по изготовлению садовых бетонных изделий, о которых рассказывается на страницах kamsaddeco.com, вместо пропарки используются химические добавки (например, формиат натрия). Применяя их совместно, можно еще более ускорить процесс застывания и освобождения форм.

Вместо горячей воды и пара можно использовать термоматы.

Изделие накрывается полиэтиленовой пленкой и сверху на нее укладываются термоматы на 8…12 часов. При этом также получается прочность 70% от марочной, но за более короткое время.

Когда ненужно нагревать бетон

Надо отметить, что если вы захотите использовать глиноземистый цемент, то его пропаривать нельзя. При застывании он выделяет тепла больше в 1,5…2 раза, чем обычный портландцемент. Поэтому он хорошо твердеет при температуре окружающей среды до нуля градусов.

Таким образом, зная природу и химию бетона в совокупности с протекающими в нем процессами, можно подготовить любой состав цементной смеси. Это необходимо для получения декоративного искусственного камня заданной прочности.

Но химия и бетон не единственная важная составляющая. Не только ее надо знать и учитывать при изготовлении прочного бетона.

Гранулометрия — не менее ответственная физическая характеристика. О ней уже было кратко рассказано и можно прочитать в статье про методы составления различных цементных смесей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector