Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Предельный угол откоса сыпучих грунтов

ВСН 04-71 Указания по расчету устойчивости земляных откосов

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНИИПРОЕКТ

ВСЕСОЮЗНЫЙ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИДРОТЕХНИКИ
имени Б.Е. ВЕДЕНЕЕВА

УКАЗАНИЯ
ПО РАСЧЕТУ УСТОЙЧИВОСТИ
ЗЕМЛЯНЫХ ОТКОСОВ

Издание второе

Минэнерго СССР

Составлены , во Всесоюзном

научно-исследовательском институте

гидротехники имени Б.Е. Веденеева

и утверждены Главтехстройпроектом

МИНЭНЕРГО СССР

Ленинградское отделение

Предисловие к первому изданию

Настоящие «Указания» составлены в отделе грунтов и оснований Всесоюзного научно-исследовательского института гидротехники (ВНИИГ) имени Б.Е. Веденеева профессором, доктором технических наук Р.Р. Чугаевым.

«Указания» распространяются на нескальные и полускальные грунты. В «Указаниях» вовсе не затрагиваются вопросы проектирования земляных откосов и вопросы выбора так называемых расчетных случаев, подлежащих расчету. Эти вопросы решаются по разному для различных сооружений и потому они должны освещаться в других нормативных документах, посвященных проектированию отдельных земляных сооружений (земляных плотин, дорожных насыпей и т.п.). В данных «Указаниях» имеется в виду зафиксировать только наиболее рациональную методику таких расчетов, которые должны быть одинаковыми для всех видов земляных сооружений, встречающихся в практике. В связи с этим в приводимых ниже «Указаниях» совсем не освещаются различные специальные расчеты, относящиеся только к какому-либо одному частному виду земляного сооружения (например, к намывным плотинам и т.п.). Предполагается, что такого рода специальные («частные») расчеты должны также приводиться в других нормативных документах (посвященных проектированию отдельных земляных сооружений).

Что касается оценки устойчивости откосов в период консолидации грунта, а также возможного разжижения песчаных грунтов под действием динамических сил, то, поскольку этим вопросам должен быть посвящен специальный нормативный документ (охватывающий не только расчеты устойчивости откосов, но и расчеты оснований массивных сооружений), в данных «Указаниях» вопросы консолидации и разжижения грунтов не затрагиваются.

Обоснование методов расчета, приводимых в «Указаниях», дано в книге Р.Р. Чугаева: «Земляные гидротехнические сооружения (теоретические основы расчета)», издательство «Энергия», 1967.

В этой книге показано, что наиболее точными способами расчета устойчивости земляных откосов являются (для случая однородного грунта) способ Тейлора, способ Крея и способ весового давления; эти три способа дают примерно одинаковые численные результаты, практически удовлетворяющие для плоской задачи всем трем уравнениям статики. Что касается способа Терцаги, то для пологих откосов, обычно встречающихся в гидротехнической практике, этот способ дает значительные погрешности.

Поскольку из числа упомянутых способов, относящихся к методу круглоцилиндрических поверхностей сдвига, способ весового давления является наиболее простым, то в качестве основного способа расчета в «Указаниях» приводится именно этот способ. Следует учитывать, что способ весового давления в отличие от способа Крея позволяет решать соответствующее расчетное уравнение без подбора (так же, как и способ Терцаги); вместе с тем в отличие от способа Тейлора способ весового давления легко распространяется на случай неоднородного грунта (так как мы до сего времени всегда распространяли на этот случай способы Терцаги и Крея).

Дополнительно в «Указаниях» приводится еще способ наклонных сил, относящийся к методу плоских поверхностей сдвига грунта. Этот способ имеет примерно ту же точность, что и способ весового давления.

Читайте так же:
Покраска пластмасса без грунтовки

Просьба ко всем организациям и лицам, которые будут пользоваться «Указаниями», присылать свои замечания по адресу: Ленинград, К-220, Гжатская ул., 21, Всесоюзный научно-исследовательский институт гидротехники имени Б.Е. Веденеева.

Предисловие ко второму изданию

После выпуска в свет в 1967 г первого издания настоящего нормативного документа вопрос о расчете устойчивости земляных откосов в течение 2 — 3 лет рассматривался специальной межведомственной комиссией Госстроя СССР, работавшей под председательством проф. А.Л. Можевитинова. Эта комиссия в результате подробного изучения данного вопроса пришла к заключению, что предлагаемые «Указания по расчету устойчивости земляных откосов» Минэнерго СССР, в отличие от других имеющихся аналогичных ведомственных нормативных документов, более всего отвечают современным взглядам на подобного рода расчеты. Вместе с тем эта комиссия сделала несколько ценных указаний, относящихся к тексту первого издания. Наиболее существенными из этих указаний являются следующие:

1) в случае относительно крутых и неоднородных откосов найденный при помощи метода весового давления наиболее опасный отсек обрушения, ограниченный снизу самой опасной круглоцилиндрической поверхностью сдвига, рационально подвергать (в ответственных случаях) окончательному расчету по методу Крея;

2) при учете фильтрационных сил в случае расчета по методу плоских поверхностей сдвига распределение гидродинамического давления вдоль поверхности сдвига не всегда рационально принимать по линейному закону; в некоторых случаях это распределение рационально принимать в соответствии с имеющейся кривой депрессии;

3) вопрос о расчете устойчивости земляных откосов с учетом консолидации водонасыщенного грунта имеет две разные стороны:

а) определение величины гидродинамического давления в различные моменты времени и в различных точках грунтового массива;

б) учет при статическом расчете откоса установленного гидродинамического давления. В данных нормах должна освещаться только вторая сторона вопроса (п. б); что касается величины гидродинамического давления (п. а), то она должна устанавливаться на основании соответствующих фильтрационных (гидравлических) расчетов;

4) при учете избыточного порового давления (см. стр. 31 первого издания и стр. 34 второго издания) величину этого давления следует умножать не на ds ; а на в (здесь в первом издании имелась опечатка);

5) необходимо иметь в виду, что в районе верхнего участка поверхности сдвига в случае связного грунта должны появляться растягивающие напряжения, обусловливающие возможность появления трещины на некоторой длине поверхности сдвига (в верхней ее части).

Следует отметить, что во втором издании поясненные замечания (исключая 5-е, по которому мы в настоящее время не располагаем надежными материалами) были соответствующим образом учтены автором настоящих «Указаний» проф. Р.Р. Чугаевым 1 . Кроме того, во второе издание были внесены некоторые чисто редакционные изменения.

Только в указанном отношении второе издание отличается от первого.

1 Первое замечание комиссии было учтено не полностью: вместо рекомендуемого способа Крея (согласно которому расчет приходится вести методом подбора) в данных «Указаниях» для наиболее опасной круглоцилиндрической поверхности сдвига при крутых откосах был принят способ Терцаги (который для крутых откосов дает приемлемую погрешность).

Читайте так же:
Пуфас грунтовка decoself a50 расход

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

Ведомственные строительные нормы

Указания по расчету устойчивости земляных откосов

Расчет призмы обрушения откоса. Безопасность основных строительно-монтажных работ. Вятский государственный университет

Понятие призмы обрушения используется при расчётах откосов , устойчивых к обрушению и предотвращения оползней .

См. также

Напишите отзыв о статье «Призма обрушения»

Примечания

Литература

  • А. З. Абуханов, «Механика грунтов»
  • Шубин М. А. Подготовительные работы при сооружении земляного полотна железной дороги. — М .: Транспорт, 1974.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб. , 1890-1907.

Отрывок, характеризующий Призма обрушения

Если откос массива грунта имеет крутизну больше предельной, то произойдет обрушение грунта. Удержать массив в равновесии можно при помощи подпорной стенки. Подпорные стенки широко применяются в различных областях строительства. На рис. 5.9 показаны некоторые случаи применения подпорных стенок.

Давление грунта, передаваемое призмой обрушения на грань стенки, носит название активного давления Е а . При этом подпорная стенка смещается в сторону от засыпки. Если же подпорная стенка смещается в сторону грунта, то грунт засыпки будет выпирать вверх. Стенка будет преодолевать вес грунта призмы выпирания, что потребует значительно большего усилия. Это соответствует пассивному давлению (отпору) грунта Е р .

Поскольку в пределах призмы обрушения возникает предельное равновесие, задача по определению давления грунта на подпорную стенку решается методами теории предельного равновесия со следующими допущениями: поверхность скольжения плоская, а призма обрушения соответствует максимальному давлению грунта на подпорную стенку. Эти допущения адекватны только для определения активного давления.

5.5.1. Аналитический метод определения давления грунта

на подпорную стенку

Рассмотрим условие предельного равновесия элементарной приз-

мы, вырезанной из призмы обрушения вблизи задней грани подпорной стенки при горизонтальной поверхности грунта и вертикальной задней грани подпорной стенки, при с = 0 (рис. 5.10). На горизонтальную и вертикальную площадки этой призмы при трении о стенку, равном нулю, будут действовать главные напряжения и .

Из условия предельного равновесия на глубине z

,(5.17)

здесь горизонтальное давление грунта, величина которого прямо пропорциональна глубине z , т.е. давление грунта на стенку будет распределяться по закону треугольника с ординатами = 0 на поверхности грунта и у подошвы стенки. На глубине, равной высоте стенки Н , давление . Тогда согласно условию (5.17) боковое давление на глубине Н

, (5.18)

а активное давление характеризуется площадью эпюры и равно

. (5.19)

Равнодействующая этого давления приложена на высоте от подошвы стенки.

Учет сцепления грунта. Для связного грунта, обладающего внутренним трением и сцеплением, условие предельного равновесия может быть представлено в виде

Сопоставляя (5.19) с (5.20), отметим, что выражение (5.19) характеризует давление сыпучего грунта без учета сцепления, а (5.20) показывает, насколько снижается интенсивность давления вследствие того, что грунт обладает сцеплением. Тогда это выражение можно представить в виде

Читайте так же:
Почему грунтовка ложится пупырышками

, (5.21)

где , . (5.22)

Таким образом, сцепление грунта уменьшает боковое давление грунта на стенку на величину по всей высоте. Напомним, что связный грунт способен держать вертикальный откос высотой , определяемой по формуле

, (5.23)

поэтому до глубины от свободной поверхности засыпки связный грунт не будет оказывать давления на стенку. Полное активное давление связного грунта определяется как площадь треугольной эпюры со сторонами и (рис. 5.11).

. (5.24)

Пассивное сопротивление связных грунтов определяется аналогично, с учетом того, что в формулах (5.20) и (5.22) знак минус в скобках аргумента тангенса изменится на плюс.

5.5.2. Давление грунтов на подземные трубопроводы

Давление грунта на трубопровод определяют на основе общей теории предельного напряженного состояния. Вертикальное давление в грунтовом массиве, ограниченном горизонтальной поверхностью, на глубине z (рис. 5.12, а ) с удельным весом грунта определяют по формуле

Боковое давление грунта на той же глубине

где – коэффициент бокового давления грунта в условиях естественного залегания, равный .

Если в зоне, контуром которой является трубопровод, грунт в точности заменить самим трубопроводом (рис. 5.12, б ), то естественно, что этот трубопровод будет испытывать давление, которое определяется зависимостями (5.26) и (5.27).

Давление на трубопровод передается сверху и с боков и вызывает равную и противоположно направленную реакцию основания: оно принимается в виде среднего равномерно распределенного давления – вертикального интенсивностью р и горизонтального интенсивностью q , причем имеет место соотношение р > q . Следует различать три принципиально различных способа прокладки трубопроводов: в траншее (рис. 5.13, а ), с помощью закрытой проходки (прокола) (рис. 5.13, б ) и под насыпью (рис. 5.13, в ).

При одинаковой глубине заложения Н трубопроводов давление р будет различным: при траншейной укладке р и при проколе, если Н сравнительно мало, р = , при больших значенияхНр

  • Главная
  • Сезонные работы
  • Расчет призмы обрушения откоса. Безопасность основных строительно-монтажных работ. Вятский государственный университет

Исследование угла естественного откоса строительных и рудных материалов при проектировании и разработке строительно-дорожных, горных машин и оборудования

М.А. Перепелкин, канд. техн. наук, доцент, ФГБОУ ВО «Норильский государственный индустриальный институт»

С.В. Перепелкина, бакалавр по направлению подготовки «Наземные транспортно-технологические комплексы»

Одним из важнейших показателей, необходимых при расчётах основных параметров фрикционных сепараторов и транспортирующих машин является угол естественного откоса горных пород, который образуется свободной поверхностью рыхлой горной массы или иного сыпучего материала с горизонтальной плоскостью (иногда используется термин «угол внешнего трения»).

Частицы материала, находящегося на свободной поверхности насыпи, испытывают состояние критического (предельного) равновесия. Угол естественного откоса связан с коэффициентом трения и зависит от шероховатости частиц, степени их увлажнения, гранулометрического состава и формы, а также от удельного веса материала. По углам естественного откоса пород определяют максимально допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

Угол естественного откоса для крупнокусковых фракций превышает углы мелкозернистого материала: например, угол естественного откоса криворожской руды крупностью 40–70 мм составляет 45є, а для фракции 50–12 мм – 36є. Н.Л. Гольдштейн утверждает, что, попадая на поверхность ранее засыпанных материалов, куски продолжают движение по откосу, причём, чем больше их скорость в момент падения, тем энергичнее и дальше они перемещаются по поверхности откоса. Скорость же движения материалов увеличивается с высотой их падения.

Читайте так же:
Покрытие грунтовкой стен под покраску

Рис. 1 Схема определения угла естественного откоса по С.В. Полетаеву

Различают угол естественного откоса груза в покое и в движении. Величина угла естественного откоса в покое больше, чем в движении. В табл. 1 приведены некоторые усредн ённые данные по углам естественного откоса некоторых промышленных материалов.

Для определения угла естественного откоса частиц используют приборы С.В. Полетаева (рис. 1) или Н.Г. Тетянко (рис. 2).

Рис. 2 Схема определения угла естественного откоса по Н.Г. Тетянко

Измерения угла естественного откоса рекомендуется проводить путём прикладывания транспортира с вращающейся стрелкой и линейкой (рис. 3).

Рис. 3 Угломер ската материала

По методу С.В. Полетаева сыпучий материал засыпается через воронку, установленную на штативе (на рис. не показано). Штатив с воронкой используется для удобства проведения опытов, к тому же с его помощью можно изменять высоту, с которой будет ссыпаться материал. Высыпанные частицы располагаются на столе в виде конуса.

На рис. 4 представлен рабочий процесс определения угла естественного откоса дробленой медно-никелевой руды (по методу С.В. Полетаева) с использованием угломера ската материала.

Рис. 4 Определения угла естественного откоса

По методу Н.Г. Тятенко сыпучий материал насыпается в ящик со стеклянными стенками, затем ящик опрокидывается и ставится на стол. При этом частицы располагаются в ящике так, что на стеклянном экране линия поверхности частиц определит их угол естественного откоса (который также измеряется транспортиром).

Угол естественного откоса частиц, так же как и угол трения характеризуется коэффициентом внутреннего трения частиц, т.е. коэффициентом трения частицы по частице при послойном его движении.

Вышеизложенное позволяет сделать вывод, что оценку того или иного метода определения угла естественного откоса следует производить исходя из условия соблюдения при опытах постоянства и однородности факторов, влияющих на величину показателя угла естественного откоса, а именно: давления, скорости, площади соприкосновения трущихся поверхностей и др.

Целесообразно применять для определения угла естественного откоса такой прибор, который по принципу своего действия более или менее соответствует рабочему органу изучаемой машины.

Для исследований были приняты следующие материалы: щебень, добытый в карьере рудника «Медвежий ручей » Норильского промышленного района. При проведении опытов использовались отсортированные фракции: >1 мм, 1–2,5 мм, 2,5–5 мм, 5–10 мм и 10-20 мм. Для исследования угла естественного откоса рудного материала использовалась медно-никелевая руда, добытая на руднике «Октябрьский» Талнахского месторождения Норильского промышленного района. При проведении опытов использовались те же фракции руды, что и при исследовании щебня.

Результаты исследования угла естественного откоса щебня приведены в табл. 2 и на рис. 5 и 6.

Читайте так же:
Проникающая грунтовка для кирпичной кладки

Полученные закономерности и значения углов естественного откоса будут полезны при проектировании наклонного ленточного устройства для разделения строительных сыпучих материалов. Они также могут быть полезны разработчикам транспортирующих машин, позволят определить максимально допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

Учитывая отдалённость и малую степень исследованности Норильского промышленного района, полученные нами результаты представляют собой довольно интересный научный материал и могут послужить справочными данными не только для разработчиков фрикционных сепараторов, но и для конструкторов и разработчиков транспортирующих машин.

Насыпные грунты

Устройство фундаментов на насыпных грунтах

1. Прописываем в проекте тип насыпного грунта (песок, гравий, суглинок и т.д.). Выполнять отсыпку из глины не желательно, т.к. она способна к набуханию (СП22.13330.2011 п.6.6.1).

2. Насыпные грунты необходимо послойно уплотнить до коэффициента 0,95.

3. Назначаем расчетное сопротивление грунта Ro по таб. В.9 СП22.13330.2011.

4. Определяем требуемый габарит фундамента.

5. В зависимости от Ro задаемся модулем деформации Е и выполняем проверку на осадки (Сорочан «Основания, фундаменты и подземные сооружения» таб.11.18).

6. До начала строительства необходимо подтвердить несущую способность насыпных грунтов статическими нагрузками в полевых условиях в соответствии с ГОСТ 20276-2012 (СП22.13330.2011 п.6.6.11).

7. В полевых условиях определяется модуль деформации Е, а также f(угол внутреннего трения) и C (сцепление грунта), по которым вычисляется расчетное сопротивление грунта Ro. Полученные характеристики насыпного грунта должны быть не менее принятых в проекте.

Примечания которые необходимо писать в проекте при проектировании на насыпных грунтах:

1. Обратную засыпку производить песчано-гравийной смесью с послойным трамбованием слоями не более 200 мм до коэффициента уплотнения 0,95. Толщина уплотненного слоя определяется объёмным уплотнением, исходя из характеристик уплотняющего механизма. Работы по устройству насыпи выполнять с учетом требований СП45.13330.2012.

2. Расчет габарита фундамента произведен для насыпного грунта с расчетным сопротивлением Ro=180 кПа и модулем деформации Е=15 мПа.

3. Перед началом строительства необходимо подтвердить расчетные характеристики насыпи Ro и Е в полевых условиях статическими нагрузками в соответствии с ГОСТ 20276-2012.

Примечания которые необходимо писать в проекте при возможном опирании на насыпных грунтах:

1. При обнаружении под подошвой фундамента насыпных грунтов необходимо выполнить их замену на уплотненную песчано-гравийную смесь. Засыпку грунта до проектной отметки производить песчано-гравийной смесью с послойным трамбованием слоями не более 200мм до коэффициента 0,95. Толщина уплотненного слоя определяется объёмным уплотнением, исходя из характеристик уплотняющего механизма. Работы по устройству насыпи выполнять с учетом требований СП45.13330.2012.

2. Расчет габарита фундамента произведен для насыпного грунта с расчетным сопротивлением Ro=180 кПа и модулем деформации Е=15 мПа.

3. Перед началом строительства необходимо подтвердить расчетные характеристики насыпи Ro и Е в полевых условиях статическими нагрузками в соответствии с ГОСТ 20276-2012.

Расчет несущей способности насыпных грунтов

Определение деформации насыпных грунтов

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector