Omskvorota.ru

Строим дом
10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Предел огнестойкости полнотелого керамического кирпича

Блоки керамические поризованные пустотелые ГОСТ 530-2012

Область применения:
Блоки керамические поризованные пустотелые применяются в защищенной кладке самонесущих и несущих наружных и внутренних стен зданий и сооружений, для заполнения каркасов (ненесущих стен).

Индекс изоляции воздушного шума 46 дБ (толщина кладки 120 мм для 2,12 НФ). Индекс изоляции воздушного шума 54 дБ (толщина кладки 380 мм для 10,67 НФ).

Предел огнестойкости ненесущей стены:
— толщиной 250 мм из блоков КПП размером 250×120×138 мм – EI 150;
— толщиной 120 мм из блоков КПП размером 250×120×138 мм – EI 60.

Предел огнестойкости наружной несущей стены толщиной 510 мм из блоков КПППГ размером 510×250×219 мм (эксцентриситет приложения внешней нагрузки относи¬тельно центральной оси поперечного сечения е0=100 мм, приложенная нагрузка N=124 кН/м) – REI 150.

Предел огнестойкости внутренней несущей стены толщиной 380 мм из блоков КПППГ размером 380×250×219 мм (центрально нагруженная кладка, N=369 кН/м) – REI 150.

Предел огнестойкости наружной несущей стены толщиной 380 мм из блоков КПППГ размером 380×250×219 мм (е0=80 мм, N=240 кН/м) – REI 150.

** 2,12 НФ – обозначение размера (2,12 – коэффициент перевода в условный кирпич, равный отношению объема изделия к объему условного кирпича, за который принят кирпич размером 250×120×65 мм; правила пересчета натуральных кирпичей (камней, блоков) в условные изложены в приложении 2 постановления Министерства статистики и анализа Республики Беларусь от 1.04.2008 г. №37 (ред. от. 31.10.2008 г. №388).

Блок керамический поризованный пустотелый

Формат блока2,12 NF
Размер, мм250х120х138
Масса, кг3,4-4,0
Прочность (МПа)М100-М150
МорозостойкостьF75
Средняя плотность, кг/м 3850900
Теплопроводность в сухом состоянии, Вт/м*K0,1800,184
Пустотность, %43-44
Удельная эффективная активность естественных радионуклидов, Бк/кгне более 370

Блок керамический поризованный пустотелый пазо гребневый

Формат10,67 NF
Размер, мм380х250х219
Масса, кг17-20
Прочность (МПа)М100
МорозостойкостьF75
Средняя плотность, кг/м3850900
Теплопроводность в сухом состоянии, Вт/м*K0,1780,218
Пустотность, %44-45
Удельная эффективная активность естественных радионуклидов, Бк/кгне более 370

Блок керамический поризованный пустотелый пазо-гребневой

Что такое керамический кирпич — виды и основные характеристики

Кирпич выпускают в виде штучных изделий правильной геометрической формы для кладки несущих и декоративных элементов здания. Керамический кирпич представляет собой искусственный камень красного цвета из натуральных компонентов. Является наиболее распространенным материалом для строительства зданий в условиях высокого парообразования влажности и жары. Виды камней различают по способу изготовления, сырью, формам и размерам.

  1. Состав и производство керамического кирпича
  2. Производство
  3. Технические характеристики
  4. Сравнение белого и красного кирпича
  5. Виды керамического кирпича
  6. Специальные разновидности
  7. Вес и стандартные размеры
  8. Применение материала
  9. Особенности облицовочного керамического кирпича

Состав и производство керамического кирпича

Цвет кирпича зависит от типа глины и добавок

Технические характеристики стройматериала регламентирует ГОСТ 74.84 – 1978, где приведены нормы и показатели готовой продукции, а также технические условия изготовления.

Керамический кирпич различают в зависимости от технологии производства:

  • Необожженный. Его называют адоба, а изготавливают сушкой приготовленной смеси в формах на открытом пространстве. Получаются камни со слабыми техническими свойствами. Материал в профессиональном строительстве не применяют, его ставят в конструкции хозпостроек частного домостроения.
  • Обожженный. Термически обрабатывают в камерах или печах, чтобы получить материал с высокой несущей способностью и низкой проницаемостью для влаги.

Нормативы предусматривают обязательную маркировку изделий с указанием показателя морозостойкости (буква F с цифрами). Норму прочности товара на сжатие указывают буквой М и числом.

Места добычи с однородными по составу минералами и толстыми глиняными пластами (многометровые залежи) встречаются редко, а известные уже истощены разработками. Постоянная структура глины нужна, чтобы выбрать неизменные регламенты сушки в производстве.

В сырьевую массу входят компоненты, концентрация которых обычно не превышает 30%:

  • мелкофракционная глина и постоянная комбинация минералов в виде сланцев и каолина;
  • небольшие пропорции бария, марганца для получения оттенков и повышения химической стойкости;
  • включают отощающие вещества в виде песка, размолотого кирпича;
  • пористую структуру камням придают измельченная солома, частицы каменного угля, опилки, которые при обжиге выгорают в массе, а на их месте образуются пустоты;
  • добавки из аммониевых растворов, смачивающих веществ, стекловых флюсов.
Читайте так же:
Мета ангара обложить кирпичом

Почти все месторождения вмещают глину в виде множества слоев. Для разработки используют роторные и многоковшовые экскаваторы, которые снимают пласты по высоте, перемалывают массу, смешивают до однородности. Иные типы копающих механизмов не применяют, т. к. они вынимают глину большими глыбами с разнородной концентрацией.

Производство

На начальном этапе в сепараторе дробят сырье, также применяют щековые дробилки. Подготавливают требуемые концентрации ингредиентов, их фильтруют.

Процесс изготовления кирпича из керамики включает циклы:

  • подготовка сырьевых материалов;
  • экструзия;
  • снятие фаски;
  • покрытие;
  • сушка;
  • обжиг;
  • упаковка.

Для разделения частиц по размерам и химическому составу используют сканирующий экран. Подходящие фракции идут в производство, а большие дополнительно дробят стальными молотами. Формуют сырье методом экструзии, при этом в емкости смешивают сыпучее сырье с водой и подают в экструдер.

Экструдер для кирпича

Приспособление имеет две камеры:

  • в первом отсеке вакуумом удаляется воздух;
  • во второй (цилиндр повышенного давления) материал сжимают.

После уплотнения смесь выдавливают из агрегата, формируют размеры, помещают в матрицы, дополнительно уплотняют стальным поршнем. Фаску снимают на специальном оборудовании. Не все типы кирпича подвергают процедуре, только фасадные и для мощения.

Песчаное покрытие выбирают в зависимости от жесткости изделий:

  • для мягких применяют вибрационное нанесение;
  • текстурированные — обмазывают;
  • для твердых — используют ролики, сжатый воздух, или пескоструй.

Сушат кирпич в туннельных или автоматических сушилках, куда их подают конвейером. После этого их перемещают в туннельные печи на обжиг, где они затвердевают, набирают прочность. Готовую продукцию упаковывают.

Технические характеристики

Прочность регламентируют маркой, этот показатель зависит от плотности и технологии производства. Наиболее популярными считают марки М150 и М200.

  • Теплопроводность.Полнотелый кирпич характеризуется показателем в диапазоне 0,6 – 0,7 Вт/м·град, а изделия с пустотами — 0,3 – 0,5 Вт/м·град. Низкая теплопроводность позволяет сооружать энергоэффективные конструкции.
  • Объемный вес.Полнотелый кирпич имеет показатели 1,6 – 1,9 т/м³, пустотелый — 1,1 – 1,45 т/м³. Характеристику определяет внутренний объем пор в составе изделия.
  • Морозостойкость. Разные виды материала выдерживают от 50 до 100 циклов заморозки и оттаивания.
  • Усадка. У кирпичной кладки изменения размеров не происходит под действием жары и мороза. Показатель равен 0,03 – 0,1 мм на один метр.
  • Водопоглощение составляет 6 – 14%. Это низкий показатель, который не меняет качества кирпича в любых условиях работы (в земле, на воздухе, в бане, сауне).
  • Паропроницаемость. Значение достигает параметров 0,14 – 0,17 Мг/м·ч·Па, поэтому обеспечивает необходимый уровень воздухообмена в помещении.
  • Огнестойкость. Материал считают негорючим, т. к. в течение 10 часов действия высоких температур при пожаре он не меняет прочности, не разрушается.

Стройматериал обеспечивает неплохую изоляцию от шума, эта характеристика нормируется в соответствии со СНиП 23.03 – 2003, где приведены требуемые стандарты.

Керамический кирпич

Керамический кирпич — строительный материал из обожженной глиняной массы в форме прямоугольного параллелепипеда с размерами 265х120х65 (и др.), применяющийся как конструктивный и ограждающий элемент (рядовой кирпич) или облицовочный (лицевой кирпич). По ГОСТ 530-2012 изделие номинальной толщиной 140 мм и более называется камнем.

Состав: глина

Способ изготовления: Применяется два метода производства керамического кирпича: полусухого прессования и более популярный метод пластического формования. В первом способе сырец формируют из глины влажностью 4-16% сильным прессованием и затем обжигают. Достоинства метода полусухого прессования: более быстрый, более простая механизация. Во втором глиняную массу влажностью 23-35% формируют с помощью ленточного пресса, затем сушат и обжигают. Достоинства метода пластического формирования: возможность выпускать изделия различных размеров, форм и пустотностей, в отдельных случаях более высокая прочность и морозостойкость.

Разновидности по структуре: пустотелый и полнотелый (камень только пустотелый)

По области применения: рядовой и лицевой (камень с пазогребневым и с пазовым соединением может быть только рядовым), шамотный, клинкерный

Читайте так же:
Печь для гаража с кирпича

Размеры и форматы:

Обозначение видаНоминальные размерыОбозначение размера
Длина или нерабочий размерШирина или рабочий размерТолщина нешлифо-ванных камнейТолщина шлифо-ванных камней
КМ250
250
380
250
250
510
250
260
380
510
250
260
250
260
120
250
250
380
250
120
250
250
250
250
380
380
510
510
140
140
140
140
188
219
219
219
219
219
219
219
219
219





229
229
229
229
229
229
229
229
229
2,1НФ
4,5НФ
6,8НФ
6,8НФ
6,0НФ
6,9НФ
7,0НФ
7,3НФ
10,7НФ
14,3НФ
10,7НФ
11,1НФ
14,3НФ
14,9НФ
КМД129
188
248
129
129
250
250
250
380
510
219
219
219
219
219
229
229
229
229
229
3,6НФ
5,2НФ
7,1НФ
5,5НФ
7,4НФ

Марка по прочности: М100, М125, М150, М175, М200, М250, М300; клинкерный кирпич – М300, М400, М500, М600, М800, М1000; камни – М25, М35, М50, М75, М100, М125, М150, М175, М200, М250, М300; кирпич и камень с горизонтальными пустотами – М25, М35, М50, М75, М100.

Марка по морозостойкости: F25, F35, F50, F75, F100, F200, F300

Теплопроводность: 0,27 – 0,7 (кирпич рядовой/лицевой пустотелый/полнотелый); 0,16 – 0,25 (камень)

Ср. плотность (классы): 0,7; 0,8; 1,0; 1,2; 1,4; 2,0; 2,4

Класс средней плотности изделияГруппа изделий по теплотехническим характеристиками
0,7; 0,8Высокой эффективности
1,0Повышенной эффективности
1,2Эффективные
1,4Условно-эффективные
2,0; 2,4Малоэффективные (обыкновенные)

Плотность: 700 – 2400 кг/см3

Класс средней плотности изделияСредняя плотность, кг/м3
0,7До 700
0,8710– 800
1,0810−1000
1,21010−1200
1,41210−1400
2,01410-2000
2,42010-2400

Влагопоглощение: 8-12%

Вес: 2 — 4 кг (кирпич полнотелый/пустотелый лицевой/рядовой 1НФ)

Цена: 9 — 15 руб. (кирпич полнотелый/пустотелый лицевой/рядовой 1НФ)

Достоинства: экологичность, высокая прочность, высокая морозостойкость, высокая теплоемкость, высокая устойчивость к агрессивным средам, универсальность, не деформативен, в отличие от силикатного имеет низкое влагопоглощение, низкую теплопроводность и более высокую огнестойкость

Недостатки: возможно наличие высолов, более дорогой в отличие от силикатного

Где стоит использовать: Рядовой кирпич используется для возведения несущих и самонесущих стен и перегородок, цоколей и др.конструкций. Лицевой — для облицовки фасадов зданий. Шамотный для строительства печей и дымоходов. Клинкерный для мощения дорожек и тротуаров.

Где не стоит использовать: Кирпич полусухого прессования нельзя применять для кладки цоколей, фундаментов и наружных стен влажных помещений.

Действующий ГОСТ на 2014 год: ГОСТ 530-2012.

Пример маркировки по ГОСТу: КР-р-по 250×120×65/1НФ/150/1,4/50/ГОСТ 530-2012.
Расшифровка: Кирпич рядовой полнотелый с размерами 250х120х65, формат 1НФ, марка по прочности М150, средняя плотность 1,4 ( 1210−1400 кг/см3), класс по морозостойкости F50. Маркировка по ГОСТу 530-2012

ГОСТы и СНиПы:

Испытания теплопроводности кирпича и камней в кладке
ГОСТ 530-95 | ГОСТ 26254-84 | ГОСТ 530-2007

Испытания на прочность сцепления в каменной кладке
СНиП П-7-81 п.3.39 | ГОСТ 24992-81

Испытания на воздухопроницаемость ограждающих конструкций
СП 23-101-2004

Испытания на изоляцию воздушного шума
ГОСТ 27296-87 | СНиП 23-03-2003

Пожаростойкость, долговечность и экономичность газобетона ГРАС

Автоклавный газобетон представляет собой пористый каменный материал на основе песка и минеральных вяжущих компонентов, затвердевший в сосуде высокого давления (автоклаве) в среде насыщенного водяного пара при давлениях от 0,9 до 1,5 МПа и температурах от 174 до 194 °С.

Исходными материалами применяемыми для изготовления автоклавного газобетона (газосиликата или газобетона) являются:

  • вяжущие — цемент, известь;
  • заполнители — песок кварцевый;
  • газообразователь — алюминиевая пудра;
  • вода.

Пористость материала достигается за счет образования пузырьков газа в цементно-песчаной смеси при реакции алюминиевой пудры с известью. Требования к составам и качеству исходных материалов и изготовлению изложены ГОСТ 31359, СТО 501-52-01.

Несмотря на то, что газобетон — высокопористый материал (пористость может доходить до 90 %), он не является гигроскопичным. Равновесная влажность газобетонных стен, по данным многочисленных исследований, находится в пределах 4-5 % по массе, а тот же показатель деревянных стен из сосны и ели 15-20 % (согласно СП 23-101) — в 4 раза выше. После дождя, газобетон, в отличие от древесины, быстро высыхает и не коробится.

Читайте так же:
Методика определения прочности керамического кирпича

В противоположность кирпичу, газобетон низко капиллярный материал и не «сосет» воду, поскольку капилляры прерываются сферическими порами. Пористость обеспечивает его высокую морозостойкость, т.к. вода, превращаясь в лед и увеличиваясь в объеме, имеет достаточно место для расширения без угрозы разрыва материала. Морозостойкость даже незащищенного газобетона может во много раз превысить морозостойкость красного, а тем более силикатного кирпича.

Основными преимуществами газобетона по сравнению с другими материалами является его Экологичность, Энергоэффективность, Пожаростойкость, Долговечность, Экономичность.

Важным свойством стен из газобетона, характеризующего его как экологичный материал, является его высокая паропроницаемость. Это свойство позволяет, как говорят, «дышать» стенам, обеспечивая свободный проход пара и газов (CO, CO2, CH4) из помещений через стену (без ее увлажнения) и обратное поступление (извне) атмосферных отрицательно заряженных аэроионов — дыхательной компоненты воздуха.

Например, стена, имеющая толщину, обеспечивающую минимальное нормативное сопротивление теплопередачи 1,94 min R = м2•°С/Вт, характеризуется паропроницаемостью:

  • из газобетонных блоков D500 на клею — 0,65 мг/м2•ч•Па;
  • из сосны и ели — 0,18 мг/м2•ч•Па;
  • из кирпича на цементном растворе 0,07-0,1 мг/м2•ч•Па.

Если же в кирпичной кладке имеется теплоизолирующая прослойка из пенополистирола или минеральной ваты в полимерной пленке, то паропроницаемость «дыхание» будет еще хуже.

По радиоактивности газобетон относится к I классу (низкий уровень) с приведенным излучением Аэфф=54 Бк/кг. Его соседи — дерево 120 Бк/кг, гипс 153 Бк/кг, асбестоцемент 380 Бк/кг, керамзит 200 Бк/кг.

Энергоэффективность газобетона характеризуется хорошими теплоаккумулирующими свойства материала. Такие показатели, как количество аккумулированного тепла и отношение времени остывания материала t, сек, к аккумулированному им теплу Q, Дж/м2•°С. В сравнении с другими материалами у газобетона лучше. Из сравнения следует, что у газобетона и дерева время остывания стены примерно одинаково и лучше чем у полнотелого кирпича в 4,8 раза, пустотелого в 3 раза, то есть кирпич быстрее теряет тепло чем газобетон. Однако, для нагревания газобетонной стены расходуется меньше тепла, чем для нагревания стены из дерева или кирпича.

Пожаростойкость

Газобетон является несгораемым строительным материалом (НГ), в соответствии с ГОСТ 31359 и ГОСТ 30244 он обладает низкой теплопроводностью. Это замедляет скорость потери прочности газобетона при нагревании. Испытания на огнестойкость плит перекрытий из газобетона пролетом 6 м из газобетона марки по плотности D600 под распределенной нагрузкой 300кг/м2 (3кПа), показали, что при нагревании плиты потери несущей способности и целостности не было достигнуто в течение 70 мин. Согласно СНиП 21-01 у плиты предел огнестойкости не менее REI 60, т.е. сопротивление пожару не менее 60 мин. Испытание на огнестойкость перегородок, выполненных из газобетонных блоков плотности D400, D500, D600 толщиной 75 мм и 100 мм показали, что они выдержали воздействие огня в течении 240 мин и соответствуют типу противопожарных преград I, а их предел огнестойкости как преграды не менее RЕI240, класс пожарной опасности — КО.

Приведенные пределы огнестойкости конструкций из газобетона характеризуют его как материал, из которого можно возводить противопожарные стены (брандмауэры) и применять его для защиты строительных конструкций от действий огня с целью повышения степени их огнестойкости. При этом кладка стен должна быть выполнена качественно, все швы заполнены раствором или клеем.

Долговечность

По долговечности здания, наружные стены которых выполнены с применением газобетонных панелей или блоков, не уступают зданиям со стенами, выполненными из кирпича или бетона. Например, согласно СТО 00044807-001-06 у здания с наружными стенами из автоклавного газобетона, прогнозируемая долговечность 125 лет, продолжительность эксплуатации до первого капитального ремонта — 55 лет.

Для сравнения, продолжительность эффективной эксплуатации зданий, утепленных минераловатными или полистирольными плитами, до первого капитального ремонта составляет 20-35 лет.

Читайте так же:
Кухонный фартук пластик под кирпич

Экономичность

Многолетний опыт производства автоклавного газобетона показал, что энергозатраты на его производство составляют 320 кВт•ч/м3, при производстве плотного кирпича требуется 900 кВт•ч/м3, пустотного — 600 кВт•ч/м3. Экономическая эффективность применения газобетонных блоков при строительстве несущих стен жилых зданий давно известна. Расчеты и практика применения газобетона показывают, что 1 м2 газобетонной стены в 4,3 раза дешевле кирпичной стены, в 3,0 раза — керамзитобетонной, в 1,6 раза — пенобетонной, в 1,35 раза — полистирольной, в 2 раза — деревянной. Это свидетельствует о том , что газобетон является более экономичным по сравнению с другими строительными материалами (пустотный кирпич, керамзитобетонные, пенобетонные, полистирольные блоки, деревянный брус). Все рассчитываемые стены имеют сопротивление теплопередаче 1,94 0 R = м2•°С/Вт.

В итоге, стены из газобетона не горят, не подвергаются гниению, относятся к первой (наилучшей) группе материалов по радиоактивности, прекрасно «дышат», значительно легче по сравнению со стенами из общеизвестных рассматриваемых материалов, что приводит к удешевлению фундамента, а поскольку газобетон легко пилится, сверлится, пробивается, тем самым снижается трудоемкость строительных работ.

Все эти свойства свидетельствуют, что газобетон является экологичным, экономически эффективным материалом, из которого следует строить доступное жилье для граждан России.

Как узнать степень огнестойкости здания?

У каждого здания имеются характеристики, позволяющие ему в течение определенного времени сопротивляться огню. По истечению этого срока начинается процесс разрушения сооружения, нередко заканчивающийся его полным обрушением. Способность противодействовать пламени на протяжении какого-либо периода называется степенью огнестойкости здания. От нее зависит и скорость распространения возгорания в пределах внутреннего объема сооружения.

Содержание:
Огневая стойкость стройматериалов
✎ Дым и токсичность
Огнестойкость зданий и сооружений
✎ Степень огнестойкости кирпичного здания
✎ Степень огнестойкости деревянного здания
✎ Степень огнестойкости здания из сэндвич-панелей
Классификация по степени огнестойкости зданий, сооружений и пожарных отсеков
Виды огневой стойкости

Качество конструкций, которые применены для строительства, является одним из основных параметров, влияющих на степень огнестойкости здания. Как определить значение этого показателя, можно узнать из специальных методик расчета.

Огневая стойкость стройматериалов

Определение степени огнестойкости здания начинается с оценки аналогичных параметров материалов, использованных при строительстве. Прежде всего, их необходимо разделить на горючие и негорючие, соответственно обозначаемых как «Г» и «НГ». При этом вещества, характеризующиеся как способные к возгоранию, делятся на четыре категории. Первая – слабогорючие (Г1), вторая – умеренные (Г2), третья – нормальные (Г3), четвертая – сильные (Г4).

В соответствии с другим критерием – воспламеняемостью, можно установить дополнительную характеристику веществ, использованных в конструкции объекта. Их можно условно разделить на три класса. Первый из них – вещества, чье воспламенение совершается с большими затруднениями (В1), второй – умеренно воспламеняющиеся (В2), третий – с легкостью воспламеняются.

Для деревянных зданий и поверхностей кровли и пола остальных сооружений существует еще один критерий оценки. Это способность материалов к распространению огня по собственной поверхности. В этом случае деление происходит следующим образом. В первом случае они не распространяют огонь (РП1), во втором – распространяют, но слабо (РП2), в третьем – умеренно способствуют (РП3), и в последнем, четвертом – провоцируют сильное продвижение огня (РП4).

✎ Дым и токсичность

В число факторов, влияющих на устранение последствий возникшего пожара, входит и задымление объекта. Сильное задымление может не только создать препятствия при проведении эвакуации людей, но и привести к человеческим жертвам. То же можно сказать и о токсичности продуктов горения. Обе характеристики подлежат фиксации в паспорте здания. Для раннего обнаружения возгорания на объекте используются дымовые извещатели.

Для обозначения коэффициента образования дыма принято использовать литер «Д». Существует три класса:

  • здания со слабым выделением (Д1);
  • с умеренным объемом дыма (Д2);
  • с большим выделением (Д3).

Похожее деление есть и при классификации степени токсичности:

  • предельно опасная для человека (Т4);
  • высокой степени (Т3);
  • средняя опасность (Т2);
  • низкая степень (Т1).

Для удобства использования вышеперечисленных характеристик принято следующее обобщающее обозначение – классификация «КМ». В этом значении объединены все пять показателей, приведенные выше, и в руководящих СНиПах, фигурирует именно эта аббревиатура.

Читайте так же:
Можно ли использовать силикатный кирпич для бани

Всего существует пять классов «КМ», в целом соответствующих предыдущим делениям. При этом наиболее опасным является «КМ5», а «КМ0» представляет наименьшую угрозу для жизни и здоровья человека.

Огнестойкость зданий и сооружений

Любые постройки и сооружения можно разделить на три вида:

  • сгораемые;
  • плохо или трудно сгораемые;
  • несгораемые.

Деление является достаточно условным, учитывая, что чаще всего капитальные объекты сооружены с применением различных материалов. Причиной разнородности сооружений является широкая линейка используемых конструктивных элементов. Как правило, при строительстве применяется и дерево, и полимеры, и бетон, и множество других составов.

Для определения степени огневой стойкости сооружения необходимо сделать соответствующий расчет. В его основе заложено время, проходящее от начала воздействия пламени до появления в стенах здания повреждений либо разрушения. Для совершения расчетных действий необходимо учитывать следующие дефекты сооружения:

  • температура стены, противоположной той, на которую воздействует пламя, поднялась до 160-190°С, то же правило распространяется и на другие конструкции здания;
  • возникают сквозные разрушения в виде трещин и мелких проемов, способствующих проникновению огня в расположения, не затронутые пожаром;
  • идет процесс деформации несущих конструкций сооружения, прежде всего, изготовленных из металла, этот процесс ведет к разрушению здания.

✎ Степень огнестойкости кирпичного здания

Несмотря на то, что капитальная стена, сделанная из кирпича, сгорает за 5 часов, что на час превышает огнестойкость бетонной, кирпичное здание относится ко 2 классу. Таким образом, и бетон, и кирпич соседствуют в одной группе. В этот же класс входят и сооружения, построенные с применением металлических элементов.

✎ Степень огнестойкости деревянного здания

В зависимости от технологических особенностей и способов возведения деревянного здания оно может относиться к различным категориям огнестойкости в пределах своего 3 или 4 класса. В этом классе имеется несколько подгрупп. Это основная, соответствующая классу 3, а также 3б. Различие определяется технологиями строительства и особенностями применения материалов.

✎ Степень огнестойкости здания из сэндвич-панелей

Постройки из сэндвич-панелей имеют класс сопротивляемости возгоранию 3а. При этом нужно учитывать, что на этот показатель серьезно влияют индивидуальные характеристики тех или иных панелей. Все они отличаются друг от друга по материалу наполнения, прочности внешней оболочки, особенностям конструкции. Более полную информацию приводит сам производитель в техническом паспорте изделия и непосредственно на поверхности материала.

Классификация по степени огнестойкости зданий, сооружений и пожарных отсеков

При заполнении паспорта капитального сооружения нужно выяснить, насколько оно устойчиво к влиянию пламени, какова степень стойкости здания. Таблица ФЗ 123 от 2018 года содержит основную информацию по способности сопротивления пламени того или иного сооружения.

Этим законом введен в действие техрегламент, который устанавливает требования безопасности. В числе прочих противопожарных классификаций там же вычисляется степень огнестойкости зданий и сооружений. Таблица классифицирует следующие степени устойчивости материалов:

Виды огневой стойкости

Существует два вида огневой стойкости сооружений – это фактическая и требуемая. Каждая имеет свое условное обозначение – это СОф для фактической и СОтр для требуемой. При этом коэффициент фактической огнестойкости не должен уступать значению требуемой.

Фактической огневой стойкостью является реальная характеристика, определенная с помощью пожарно-технического испытания, проведенного специальным уполномоченным органом. Расчеты производятся с помощью нормативной таблицы.

Требуемая огневая стойкость изначально закладывается в проект на основе нормативных и расчетных данных. База для расчета этого значения получается из характеристик сооружаемого объекта и специализированных документов. Обязательно учитывается присутствие противопожарной системы, площадь помещений, строительные материалы.

Классификация пожарной огнестойкости дает представление о направлении дальнейшей деятельности в вопросе обеспечения противопожарной безопасности. Чем ниже класс сооружения, чем менее устойчиво оно к воздействию пламени, тем более изощренная система защиты от огня ему требуется. Расчет этого значения относится к обязательным мероприятиям при возведении капитального здания.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector