Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение прочностных характеристик кирпича

Определение прочности каменных конструкций

7.3.1. Для определения в натурных условиях прочности каменных конструкций без их разрушения применяют ультразвуковые методы по ГОСТ 17424-90 или механические методы неразрушающего контроля по ГОСТ 22690-88. Для указанных целей используют, в частности, ультразвуковой прибор УКБ-1, УКБ-1М (рис. 7.2). Зная расстояние между излучателем и приемником и время прохождения ультразвука через конструкцию, вычисляют скорость ультразвука. Прочность материала определяют по тарировочным кривым для каждого вида материала. Тарировку выполняют в соответствии с ГОСТ 16724-90 и ГОСТ 10180-90. На рис. 7.3 приведены тарировочные кривые для определения прочности кирпичной кладки с помощью прибора УКБ-1.

При невозможности прозвучивания конструкций с разных сторон применяют так называемый профильный метод, перемещая щуп приемника через определенные равные расстояния по поверхности испытуемого элемента.

7.3.2. Для определения прочности кирпича, раствора и мелкозернистых бетонов (пенобетон, газобетон и др.) применяют прибор типа ПС-1 (рис. 7.4), разработанный кафедрой железобетонных конструкций Московского института коммунального хозяйства и строительства. Принцип действия прибора основан на измерении глубины внедрения конического инвертора в испытуемый материал под действием статической нагрузки. Нагрузка создается вручную нажатием на рукоять прибора и передается на кононический элемент через тарированную пружину. Значение нагрузки ограничено заданным перемещением рукоятки в пределах прорези в корпусе прибора.

Рис. 7.2. Ультразвуковой импульсный прибор УКБ-1М

Рис. 7.3. Тарировочные кривые для определения прочности конструкции с помощью прибора УКБ-1

1 — силикатный кирпич; 2 — красный кирпич

Рис. 7.4. Прибор ПС-1

Прочность материала может быть определена как на отдельных образцах, извлеченных из конструкции, так и непосредственно в конструкции, в том числе и находящейся под нагрузкой.

Поверхность материала, прочность которого определяется, должна быть ровной площадкой 15-20 см в поперечнике, очищенной от грязи, краски и штукатурки. Поверхность следует обработать шкуркой и обеспылить.

При применении прибора ПС-1 следует руководствоваться инструкцией по его эксплуатации.

На рис. 7.5 приведена тарировочная кривая зависимости прочности материала (кирпич, раствор, мелкозернистый бетон) от глубины проникновения индентора в испытуемый образец под действием тарированного усилия.

7.3.3. Для лабораторных испытаний прочности кирпича и раствора отбор образцов производят из малонагруженных элементов конструкций при условии идентичности применяемых на этих участках материалов. Образцы кирпича или камней должны быть целыми без трещин. Из камней неправильной формы выпиливают кубики с размером ребра от 40 до 200мм или высверливают цилиндры (керны) диаметром от 40 до 150мм. Участки кирпичной или каменной кладки, с которых отбирали образцы для испытаний, должны быть полностью восстановлены для обеспечения исходной прочности конструкций.

Рис. 7.5. Тарировочная кривая для определения прочности материалов прибором ПС-1. Рабочее усилие Р=100 Н

7.3.4. Для испытания растворов, отобранных из кирпичной кладки, изготовляют кубы с ребром от 20 до 40 мм, составленные из двух пластин раствора, склеенных гипсовым раствором. Образцы испытывают на сжатие с использованием стандартного лабораторного оборудования. Определение прочности кирпича и камней производится в соответствии с требованиями ГОСТ 8462-85, раствора — ГОСТ 5802-86 или СН 290-74. Значения масштабных коэффициентов следует определять в соответствии с требованиями ГОСТ 10180-90.

7.3.5. Поверочные расчеты несущей способности каменных и армокаменных конструкций производятся в соответствии со СНиП II-22-81, с учетом фактических физико-технических характеристик материалов, полученных в результате инструментальных натурных обследований и лабораторных их испытаний.

Дата добавления: 2016-05-25 ; просмотров: 1294 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Прочность на сжатие кирпича м100. Определение марки кирпича

→ Кирпич и камни керамические

Определение марки кирпича по прочности

Марка кирпича и камней устанавливается по результатам их испытания на прочность при сжатии и изгибе для всех видов кирпича и только при сжатии для камней, проводимых в соответствии с ГОСТ 8462-85.

Испытания проводят на сухих образцах. Влажные образцы перед испытанием выдерживают не менее 3 сут в закрытом помещении при температуре (20±5)°С и подсушивают в течение 4 ч при температуре (Ю5±5) °С.

Образцы, отобранные для испытаний по внешнему виду, наличию дефектов и внешнему виду, должны удовлетворять требованиям стандарта (ГОСТ 530-95).

Предел прочности при сжатии кирпича определяют на образцах из двух целых кирпичей или из двух половинок. Кирпич делят на половинки распиливанием или раскалыванием. Кирпичи (или половинки) укладывают постелями друг на друга. Половинки размещают поверхностями раздела в противоположные стороны.

Испытания керамических камней проводят на целых образцах.

Опорная грань (постель) у кирпича и камней пластического формования всегда имеет существенные отклонения от плоскости, что не обеспечивает равномерности распределения нагрузки на всю плоскость образца. Поэтому при подготовке образцов к испытаниям производят выравнивание поверхностей, которые в конструкции и, соответственно, при испытании располагаются перпендикулярно направлению сжимающей нагрузки.

Читайте так же:
Тюнинг митсубиси делика кирпич

Части половинок кирпича (или целые кирпичи) и опорные поверхности кирпича и камней стандарт рекомендует соединять и выравнивать цементным раствором. Состав раствора по ГОСТ 8462-85: цемент марки не ниже 400 – 1 мае. ч; песок крупностью не более 1,25 мм – 1 мае. ч; В/Ц- 0,40…0,42.

Изготовление образца для испытаний кирпича производят следующим образом. Кирпичи или его половинки полностью погружают в воду на 1 мин. После этого на горизонтально установленную пластину (металлическую или стеклянную) толщиной не менее 5 мм укладывают лист бумаги, слой раствора не более 5 мм и первый кирпич или его половинку. Затем опять слой раствора и второй кирпич (половинку). Излишки раствора удаляют, а края бумаги загибают на боковые поверхности образца. В таком положении образец выдерживают в течение 30 мин. После этого образец переворачивают и выравнивают другую опорную поверхность.

Общий вид образца, подготовленного к испытаниям, представлен на рис. 1, а. Отклонение от параллельности выравне-ных опорных поверхностей образца, определяемое по максимальной разности любых двух его высот, не должно превышать 2 мм.

Рис. 1. Схема испытаний кирпича на сжатие (а) и изгиб (6) при определении его марки по прочности: 1 – плита пресен; 2 – выравнивающий материал; 3 – кирпич

Выравнивание опорных поверхностей при изготовлении образца из керамического камня производят в той же последовательности.

Образцы после изготовления выдерживают 3 сут при температуре (20±5)°С и относительной влажности воздуха 60…80% для твердения цементного раствора.
Образцы из кирпича полусухого прессования испытывают «насухо», не производя выравнивания их поверхностей цементным раствором.

Кирпичи и камни пластического формования допускается испытывать на образцах, подготовленных другими способами:
а) опорные поверхности выравниваются шлифованием;
б) выравнивание производится гипсовым раствором;
в) с помощью прокладок из технического войлока, резино тканевых пластин (транспортерные ленты), картона и других материалов.

Образцы, изготовленные с применением гипсового раствора, испытывают не ранее чем через 2 ч после формования.

Стандарт оговаривает, что при арбитражных проверках и проверках потребителем образцы кирпича и керамических камней готовят, соединяя и выравнивая их по указанному выше методу, т. е. при помощи цементного раствора.

Собственно испытания образцов производят в следующей последовательности. Образцы измеряют с погрешностью до 1 мм для вычисления площади его рабочей поверхности. Площадь поперечного сечения образца £ (м2) вычисляют как среднее арифметическое значение площадей верхней и нижней граней.

На боковые поверхности образца наносят вертикальные осе вые линии, с помощью которых образец устанавливают в цен тре плиты пресса. Наиболее пригоден для проведения испыта ний кирпича пресс с максимальным усилием 500 кН (50 т).

Образец прижимают верхней плитой пресса и включают масляный насос. Скорость подачи нагрузки должна быть такой, чтобы разрушение образца происходило через 20…60 с после начала испытаний.

Предел прочности при сжатии испытуемой партии кирпича и камней вычисляют с точностью до 0,1 МПа как среднее арифметическое значение результатов испытания всех пяти образцов.

Для определения марки кирпича проводят еще одно испытание — на изгиб.

Предел прочности при изгибе определяют на целом кирпиче по стандартной схеме.

В местах опирания и приложения нагрузки поверхность кирпича пластического формования выравнивают цементным или гипсовым раствором, шлифованием или с помощью прокладок.

У образцов перед испытанием измеряют с погрешностью 1 мм высоту и ширину в месте приложения нагрузки. Размеры вычисляют как среднее арифметическое значение результатов измерений двух средних линий на противоположных гранях образца.

При испытании образцов на изгиб используют специальное приспособление, фиксируемое на нижней плите пресса. Приспособление состоит из двух катков (подвижного и неподвижного), на которые устанавливается испытуемый кирпич. Сверху вдоль центральной линии (по выравнивающему слою) устанавливается каток, передающий нагрузку от верхней плиты пресса. Вся установка должна строго центрироваться. Диаметры применяемых катков — 10…20 мм; материал — сталь.

Кирпич с несквозными пустотами устанавливается так, чтобы пустоты располагались в растянутой (нижней) зоне образца.

Предел прочности при изгибе образцов в партии вычисляют с точностью 0,05 МПа, как среднее арифметическое значение результатов испытаний установленного стандартом количества образцов. При вычислении предела прочности при изгибе не учитывают образцы, значение предела прочности которых имеет отклонения от среднего значения предела прочности всех образцов более чем на 50% (по одному в каждую сторону).

Читайте так же:
Как устанавливается марка кирпича

Прочность кирпича — это основа, от чего зависит качество нашего сооружения и его долговечность. Прочность кирпича, на что нужно обратить внимание при выборе марки кирпича для небольшого подсобного сооружения так и для стройки собственного дома.

Появилась идея построить дом

Если мы решили построить настоящий дом, который простоит не одну сотню лет то, прежде всего, обратимся к самому подходящему для этих целей стройматериалу – . Почему? Из-за его высокой прочности. Это подтверждается тысячами домов из кирпича, которые простояли уже более 100 лет. Дома из кирпича успешно противостоят всем внешним природным факторам: дождь, мороз, жару и ветер. Ему не страшны ни грибки, ни вредители. Дома из кирпича синонимы безопасности и долговечности. И все это благодаря главному фактору – прочности кирпича. Одним из самых главных свойств кирпича является прочность. Прочность кирпича характеризуется его марками: М50, М75, М100, М125, М150, М175, М200, М250 и М300. Что обозначают эти цифры? Они показывают допустимую нагрузку на один квадратный сантиметр кирпича, в килограммах. Сама прочность – это способность сопротивляться напряжениям и деформациям не разрушаясь. Например – кирпич М125. Это обозначает, что кирпич выдержит нагрузку в 125 кг на 1 квадратный сантиметр. Значит при площади кирпича 300 квадратных сантиметров, чтобы разрушить наш кирпич понадобится нагрузка 37500 кг., т.е 37,5 тонн. В тоже время необходимо помнить, что придел прочности кирпича при изгибе составляет лишь 20% от предела прочности при сжатии. Также следует учесть такой параметр, как прочность самой кирпичной кладки. Которая становит максимум 40 — 50% от прочности самого кирпича. Потому что положить раствор идеально ровно и плотно по всей площади кирпича невозможно. Вот тут и возникают дополнительные силы на изгиб сжатие.

Для различных сооружений применяют разные марки кирпича

Если мы хотим построить одно или двух этажный дом то нам вполне хватит марки кирпича М100. Если речь идет о многоэтажном строительстве, то тут уже речь должна идти о М200. Проектные организации в ходе проектирования рассчитывают марку кирпича исходя из исходных данных. Хотя при расчетах толщины стен в малоэтажных зданиях на первое место выходит уже теплопроводность кирпича. Как проверяется прочность кирпича? В лаборатории на большом прессе. Под пресс кладут кирпич, а на него укладывают второй. Запускают агрегат. Пресс давит на кирпич с постепенным увеличением давления, которое отображается на манометре. В момент разрушения кирпича фиксируются данные датчика. На больших предприятиях проверяется каждая партия кирпича на прочность. В кустарных условиях маленьких цехов такие испытания не проводятся. И строить с кирпича, выпущенным на таких кустарных производствах, можно лишь сарайчики или другие вспомогательные помещения типа туалета.

Кратко рассмотрим, какая прочность у разных видов кирпичей

Силикатный кирпич делается из песчано-известковой смеси (соотношение 9:1) с пропаркой в автоклаве. Он производится быстро и относительно дешев. Прочность такого кирпича будет становить максимум М200. Красный керамический производится с помощью обжига глиняной смеси с разными добавками. В результате получается каменистая структура. В этих кирпичей уже появляется марка – М300. Гиперпрессованный кирпич, в его состав входят цемент, известняк, разные шлаки, ракушечник и тому подобное. В процессе первого месяца хранения марка такого кирпича может уже становить М350. Клинкерный кирпич, тут уже присутствуют марки аж до М 1000. Изготовляется так же как и простая керамика, только при более высокой температуре, что вызывает более глубокое спекание частиц. С такого кирпича можно строить не только дома, но и тротуары с дорожным покрытием. Следует отметить что марки прочности у импортного кирпича, такие же как и у отечественного, но у импортного кирпича более широкая цветовая гамма.

Цель работы: выработать умение оценивать качество керамического кирпича и определять его маркировку по пределу прочности.

Материалы и аппаратура: образцы кирпича, металлическая измерительная линейка, сито №1,25, пластины металлические, картон, приспособление для раскалывания кирпича на прессе, приспособление для испытания образцов на изгиб.

Общие сведения

Керамическими называют материалы и изделия, получаемые из глиняных масс или их смесей с минеральными добавками путем формования, сушки и обжига при температуре 900-1300 С. В результате обжига глиняная масса превращается в искусственный камень, обладающий высокой прочностью и плотностью, водостойкостью, водонепроницаемостью, морозостойкостью и долговечностью.

Керамический (красный) кирпич — кирпич, производимый из глины с применением различных добавок (для регулирования тех или иных свойств) с последующим обжигом.

Читайте так же:
Двойной поризованный кирпич характеристики

Керамический кирпич и камни применяют для кладки каменных и армокаменных наружных, внутренних стен и других элементов зданий и сооружений с последующей их отделкой или без нее, лицевые для облицовки наружных и внутренних стен зданий и сооружений.

1. Оценка качества керамического кирпича путем внешнего осмотра и обмера

Внешним осмотром устанавливают наличие пережога или недожога в контролируемом кирпиче, для чего сравнивают отработанные образцы с эталоном (нормально обожженным кирпичом). Более светлый цвет кирпича, чем у эталона («алый» кирпич), и глухой звук при ударе по кирпичу молотком указывает на наличие недожога. Пережженный кирпич характеризуется оплавлением и вспучиванием, имеет бурый цвет и, как правила, искривлён. Недожженный кирпич и пережженный кирпич является браком.

После внешнего осмотра кирпич измеряют по длине, ширине и толщине, а также определяют искривление поверхностей и ребер, длину трещин. Линейные размеры кирпича и размеры трещин проверяют металлической линейкой с точностью до 1 мм.

Кирпич должен иметь форму прямоугольного параллелепипеда с прямыми рёбрами и углами, с чёткими граням и ровными лицевыми поверхностями. Искривление поверхностей и ребер, отбитость или притупленность рёбер и углов устанавливают при помощи металлического угольника и линейки с точностью до 1 мм. В лаборатории кирпич укладывают на ровный стол. К проверяемой поверхности прикладывают ребром металлическую линейку или треугольник в таком направлении, чтобы выявить максимальное значение прогиба поверхностей

Таблица 1– Оценка качества кирпича путем внешнего осмотра и обмера

Значение предела прочности при сжатии для кирпича

Испытания материалов на сжатие проводят на специальных прессах или универсальных испытательных машинах по специальным методикам: для стали и чугуна используется ГОСТ 25.503-80, бетона — ГОСТ 10.180-90, древесины поперек волокон ГОСТ 16483.11-72, древесины вдоль волокон ГОСТ 16483.10-73.

Параметры образцов, видео и результаты испытаний на сжатие:

  • стали
  • чугуна
  • дерева вдоль волокон
  • дерева поперек волокон
  • бетона (цементного образца)

Образцы материалов для испытания на сжатие изготовляются в виде цилиндров высотой h и диаметром d . Для чугуна, например, рекомендуется диаметр от 10 до 25 мм. Отношение h/d должно быть в пределах от 1 до 2. При значении h/d >2 сказывается влияние продольного изгиба. При значении h/d σ с пч=Fmax/A

Разрушение чугунного образца происходит внезапно при незначительных остаточных деформациях. Разрушению предшествует образование трещин, расположенных приблизительно под углом 45° к образующим боковой поверхности образца, т.е. по линиям действия максимальных касательных напряжений (рис. 2.2,б).

Характер разрушения образцов из бетона (цементного раствора, камня) показан на рис. 2.2,в – при наличии сил трения между плитами машины и торцами образца. Разрушение происходит путем выкрашивания материала у боковых поверхностей в средней части образца. Трещины образуются под углом 45° к линии действия нагрузки.

При снижении сил трения за счет нанесения слоя парафина на опорные поверхности образца разрушение происходит в виде продольных трещин, материал расслаивается по линиям, параллельным действию сжимающей силы, и сопротивление материала уменьшается (рис. 2.2, г).

Диаграмма сжатия бетона показана на рис. 2.1, кривая 3. Из диаграммы видно, что рост нагрузки сопровождается упругими деформациями вплоть до разрушения, что вообще характерно для хрупких материалов.

Особым своеобразием отличается сопротивление сжатию древесины как материала анизотропного и обладающего волокнистой структурой. При сжатии, как и при растяжении, древесина обладает различной прочностью в зависимости от направления сжимавшей силы по отношению к направлению волокон.

На рис. 2.1 изображены диаграммы сжатия образцов из древесины одной породы. Кривая 4 иллюстрирует сжатие образца вдоль волокон, а кривая 5 — поперек волокон. При сжатии вдоль волокон древесина значительно (в 8-10 раз) прочнее, чем при сжатии поперек волокон.

При сжатии вдоль волокон образец разрушается вследствие сдвига одной части относительно другой (рис. 2.2, д), а при сжатии поперек волокон древесина склонна к прессованию и не всегда удается определить момент начала разрушения (рис. 2.2, е).

Методы определения прочности материала конструкции

Проведение статических испытаний на прочность – это тестирование шаблонных образцов определенной формы. По результатам экспериментов специалисты рисуют диаграмму, на которой можно наглядно увидеть, как деформируется материал под напряжением. Графические данные помогают оценить предел упругости и текучести, временное сопротивление. Для определения параметров определенного материала проводят специальные расчеты для вычисления усталостной нагрузки и предельного напряжения.

Методы определения прочности материала зависят его разновидности и типа строительной конструкции. Например, стандартный способ оценки характеристик кирпича – испытание на сжатие двух целых кирпичей, которые сложены друг на друга. Для исследования силикатного кирпича используют ультразвуковую методику.

Читайте так же:
Цвет рал под кирпич

Все способы исследования можно разделить на две большие группы – разрушающего и неразрушающего контроля. Они применимы к отдельным строительным конструкциям, образцам и отдельным элементам.

При возможности специалисты стараются отдавать предпочтение методам неразрушающего контроля, которые не требуют демонтажа и разбора конструкции. Несмотря на то, что образцы проб отбирают из наименее важных функциональных элементов, стандартные методы испытания прочности отражаются на устойчивости и надежности здания. Но не всегда и не у всех строительных изделий возможно оценить прочность методами неразрушающего контроля.

Методы разрушающего контроля

Отличительная особенность данного типа исследования – проведение испытаний на контрольных образцах до их полного разрушения. Например, кирпич могут сжимать или воздействовать извне иным способом до тех пор, пока он не даст трещину или не посыплется. Для этого из конструкции извлекают часть материала и отправляют в лабораторию для оценки прочностных характеристик.

Для определения участка отбора проб учитывают доступность образца, степень нагруженности, и поврежденности, интенсивность эксплуатации строительной конструкции.Методы разрушающего контроля позволяют с минимальной погрешностью вычислить физические свойства образца. Но они требуют серьезных трудозатрат. Главный недостаток исследования методом разрушающего контроля – необходимость нарушать целостность здания. Это не всегда возможно, поэтому специалисты стараются оценивать характеристики строительных материалов методом неразрушающего контроля.

Методы неразрушающего контроля

Исследование неразрушающими методами активно используется при технической экспертизе жилых, промышленных, административных зданий и построек, объектов исторического и культурного наследия. Они могут быть основаны на различных технологиях:

  • механической: метод упругого отскока, исследование пластических деформаций и ударный импульс часто используют для экспертизы бетона;
  • радиационной: методы базируются на применении радиоизотопов и нейтронов;
  • магнитной: методы магнитопорошковой и индукционной оценки;
  • акустической: исследование путем воздействия ультразвука, оценка эффектов акустоэмиссии;
  • радиоволновой: исследование распределения в материале волн разной длины;
  • электрической: определение характеристик через вычисление электросопротивления, электроиндуктивности и электроемкости строительного материала.

С помощью современных приборов и технологии можно определить прочностные характеристики изделия без конструктивных изменений и сохранить первоначальные физико-механические параметры материалы.

Группы марок щебня:

  1. М1400-М1200 — высокопрочные;
  2. М1200-М800 — прочные;
  3. М800-М600 — средней прочности;
  4. М600-М300 — низкой прочности;
  5. М200 — очень низкой прочности.

Для материала, отправляемого на изготовление асфальтобетона, главной характеристикой прочности является марка на истирание. ГОСТ устанавливает четыре марки — от И1 до И4.

Самый прочный — марки И1. Испытания на истирание проводят в специальном полочном барабане, в который загружают щебень и 12 чугунных шаров массой по 400 г. Барабан вращают со скоростью 30 об/мин. Принадлежность к конкретной марке истираемости определяют по величине потери щебнем части массы. Нормативная потеря массы после испытаний может составлять для щебня марки И1 до 25 %, для марки И4 — до 60 %.

Указанный выше норматив также ограничивает содержание в щебне слабых зёрен. К ним относят включения исходной породы с пределом прочности до 20 МПа. Таких зёрен в прочных щебнях должно быть не более 5 %, в щебнях средней прочности — не более 10 %, низкой прочности — 15 %.

Морозостойкость щебня как характеристика прочности

Понятия прочности щебня нельзя рассматривать в отрыве от характеристик его морозостойкости. Ведь прочный, но относительно уязвимый к низким температурам продукт может потерять свою прочность раньше, чем предполагает застройщик. Поэтому испытания на морозостойкость всегда сопутствуют испытаниям на прочность.

Для щебня установлены марки от F15 до F400. Продукты F15, F25 и F50 обладают низкой морозостойкостью, F100 и F150 — средней, F200, F300 и F400 — высокой морозостойкостью.

Цифры обозначают количество циклов замораживания, при которых ещё отсутствует потеря массы (разрушение щебня). На практике испытания на морозостойкость проводят как замораживанием с оттаиванием, так и насыщением продукта сернокислым натрием с последующим высушиванием. Второй метод удобнее, однако при несовпадении результатов испытания проводят только методом замораживания.

Лещадность

Это ещё одна характеристика щебня, неразрывно связанная с прочностью бетона и указывающая на наличие зёрен пластинчатой и игловатой форм. Высокая лещадность отрицательно сказывается на прочности бетона, поэтому наилучшим считается щебень I группы. Его называют кубовидным, содержание лещадных зёрен в нём — не более 10 %. Щебень V группы содержит до 50 % лещадных зёрен, его нельзя применять в фундаментах независимо от состава материала.

Читайте так же:
Строительство бани с силикатного кирпича

Как определить прочность щебня?

Точно установить принадлежность щебня к определённой марке прочности по внешнему виду не сможет даже специалист. А высокая ответственность за принятие решения требует лабораторных испытаний с составлением акта и заключения. Щебень — это основной конструкционный материал высокопрочного бетона и нагруженного асфальтобетона, выбирать его нужно весьма тщательно. В нашей компании вы всегда сможете выбрать гранитный щебень, а также гравийный щебень самых популярных марок.

Что влияет на прочность образцов?

Прочность образцов зависит от нескольких показателей. Это:

  1. марка и качество цемента, связанное с его химической активностью;
  2. его количество в бетонном замесе;
  3. форма для заполнения, а также её чистота (посторонние примеси могут резко ухудшить качество бетона);
  4. тщательность замешивания, однородность смеси цемента и наполнителей;
  5. использования вибраторов, то есть условия уплотнения;
  6. возраст отливки (должен быть не менее 28 суток);
  7. температура, при которой бетонная отливка затвердевала.

Отдельным вопросом всегда нужно выделять количество воды, которое шло на приготовление бетона. Оптимальное количество должно быть в пределах 20%, независимо от соотношения в бетонной смеси всех прочих составляющих.

Характеристики кирпичной кладки

Схема кирпичной кладки

Рассмотрим характеристики кирпичной кладки из традиционного керамического кирпича. От того какой материал вы выбираете для стен своего дома, определяется вся дальнейшая технология строительства. Именно от принятия этого решения зависит прочность, привлекательность и долговечность дома. В основном технологии возведения стен дома можно разделить на два типа:стены из кирпича и каркасные технологии строительства. Эти два типа отличаются друг от друга и имеют свои плюсы и минусы.

Стены из традиционного кирпича

Физические свойства

Этот материал проверенный во времени и завоевал заслуженную популярность у строителей. Как известно, дома из керамического кирпича стоят по 150 – 200 лет. Это обусловлено особыми свойствами кирпича, который обладает повышенной термостойкостью и не поддается разрушению грибком и всевозможными микроорганизмами. Однако, он способен впитывать влагу; отсюда вводится такая характеристика, как водопоглощение кирпича, которая колеблется в пределах 6-16%. Вполне очевидно, что для наружных кирпичных стен здания нужно подбирать материал у которого этот показатель ниже. В зависимости от плотности кирпича он характеризуется коэффициентом теплопроводности, который у полнотелого керамического изделия составляет 0,5-0,8 Вт/м² ∙ ºС, а для пустотелого – 0,34-0,43 Вт/м² ∙ ºC.

Особенности маркировки

Немаловажным значением для керамического кирпича имеет показатель его прочности, который обозначается буквой М совместно с соответствующим цифровым значением. Например, для дома, который будет иметь два-три этажа подбирают кирпич прочности М75, М100 и М 125, а вот для более высотных строений применяется материал марки М 150, М175, М 200. Кроме того, керамический кирпич характеризуется степенью морозоустойчивости, обозначенной буквой F с соответствующей величины цифрой. Для несущих стен это значение может быть F25, а для облицовки необходим кирпич со значением F50. Цифры указывают число циклов попеременного замораживания и оттаивания материала.

Раствор для кирпичной кладки

Расход раствора на кирпичную кладку

Раствор занимает около 20% от всего объема кирпичной кладки, поэтому от правильного составления его компонентов зависит качество производимых работ. Обычно смесь состоит из цемента, песка и воды в пропорции: одной части цемента и четырех частей воды. Если возникает необходимость увеличить подвижность раствора, в него добавляют глину, известь и различные пластификаторы.

Как же определить качество раствора? Если смесь приготовлена правильно, она хорошо тонким слоем укладывается по всей поверхности кирпича. Если же на кирпиче образуются чистые пятна, это указывает на плохую подвижность раствора. Такой раствор может забивать щели пустотелого кирпича, ухудшая его теплопроводность.

Контроль кирпичной кладки

Здесь нужно обратить особое внимание на следующие положения:

  • Правильный подбор кирпича, оказывающий существенное влияние на общий дизайн дома и на безопасность постройки. При визуальном осмотре нужно обратить внимание на его внешний вид и звук, отражаемый при его постукивании. Если кирпич низкого качества, он будет иметь горчичный цвет и издавать глухой звук.
  • Очень важно уложить первый ряд. Для этого используют контрольный инструмент: ровную рейку или шнур, уровень, отвес и угольник, которым контролируют углы кладки.
  • Необходимо периодически проверять толщину швов между рядами, а также состояние раствора. Это нужно делать через каждые 5 — 6 рядов кладки, выдерживая толщину шва в пределах 12 — 15 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector