Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Использование цемента при реставрации

Реставрационные материалы для восполнения утрат поверхности старой кирпичной, белокаменной кладки, декора ограждающих конструкций и их защиты на памятниках архитектуры

Т.П. ЛАПТЕВА, Н.Л. ТАНКОВА, технологи-реставраторы 1-ой категории

Основная задача при реставрации памятников архитектуры – восстановление их первоначального облика, конструктивной прочности при максимально возможном сохранении целостности конструкции и подлинного материала.
Большинство процессов разрушения памятников развиваются в поверхностных слоях каменной и кирпичной кладки, распространяясь в толщу материала на различную глубину. Замена утраченных и значительно разрушенных элементов кладки методом вычинки связана с удалением остатков старого материала и подготовкой участка для укрепления нового элемента, что неизбежно приводит к разрушению неповрежденного авторского материала кладки.
В отделе технологии реставрационных работ института «Спецпроектреставрация» были разработаны и внедрены методы и составы для восполнения утрат поверхности и придания однородности по внешнему виду старой кирпичной, каменной кладки и декора (сколы, осыпание поверхности глубиной до 5 см), укрепления белого камня (известняка), в котором под воздействием временных и атмосферных факторов произошли структурные и физико-механические изменения, а также защиты поверхности кирпичной, каменной кладки и декора за счет придания ей грязеводоотталкивающих свойств.
Для восполнения утрат поверхности кладки из кирпича и камня, разрушенных в результате неблагоприятного воздействия окружающей среды (поверхностной эрозии, морозного отторжения), использован метод домазки, позволяющий имитировать кирпич и камень, сохраняя при этом подлинный материал памятника и не препятствуя постепенной миграции на поверхность из старой засоленной кладки водорастворимых солей, которые длительное время накапливались в ней в результате нарушения условий эксплуатации.
Создание полноценных реставрационных материалов для домазочных работ было возможно лишь путем направленного регулирования их структуры и свойств с наибольшим приближением к структуре и свойствам реставрируемого материала.
Основные требования к таким материалам сводятся к следующему:
— параметры пористой структуры реставрируемого и реставрационного материала должны быть близки для обеспечения нормального процесса влагообмена ограждающей конструкции и выноса водорастворимых солей на поверхность реставрационного материала;
— коэффициент теплового расширения реставрационного материала должен быть равен коэффициенту теплового расширения материала памятника;
— прочность реставрационного материала должна быть близка, а точнее несколько ниже прочности материала памятника (механические воздействия должны разрушать преимущественно докомпоновочный материал);
— домазочный материал должен обладать достаточной адгезией к реставрируемой поверхности, обеспечивая ее целостность при эксплуатации;
— при твердении реставрационного материала не должно возникать значительных усадочных направлений;
— по внешнему виду, цвету и фактуре реставрационный материал должен соответствовать материалу памятника, в нем не должно содержаться водорастворимых солей и других выделяющихся на поверхность продуктов.
В течение ряда лет, главным образом в системе производственных мастерских объединения «Росреставрация», метод домазки внедрялся и успешно применяется по настоящее время для докомпоновки утрат поверхности кирпичной и каменной кладки составами на основе модифицированных минеральных растворов, подобранных по рецептуре и свойствам к конкретным материалам памятника. Модифицированные минеральные растворы содержат оптимальное количество цементного вяжущего, определенное для конкретного материала памятника количество заполнителя в виде кирпичной или каменной крошки, подобранный фракционный состав заполнителя и минимальное водоцементное отношение, получаемое при использовании суперпластификатора класса SNF. Все это обеспечивает реставрационному домазочному раствору необходимые параметры.
Модифицированные минеральные растворы характеризуются незначительными усадочными напряжениями. Это позволяет использовать их для домазки дефектов кладки глубиной до 3 см, а на более глубокие дефекты наносить докомпоновочный состав в несколько приемов.
Малая усадочность модифицированных минеральных растворов позволяет успешно использовать их для холодного формования отдельных элементов кладки, в том числе для имитации большемерных и сложнопрофильных кирпичей, белокаменных блоков и плит, элементов резного сложнопрофильного декора.
Как показали исследования, граница раздела между реставрационным и реставрируемым материалами химически и структурно однородна, поэтому домазочный слой не отрывается от подложки при многократном замерзании и оттаивании, а под слоем домазки не происходит разрушения материала памятника. Многолетние наблюдения и исследования показали, что в материале памятника под слоем домазки не наблюдается структурных изменений, а прочностные и влагообменные свойства сохраняются неизменными.
Принципиально важным для обеспечения качества выполняемых реставрационных работ является положенный в основу создания модифицированных минеральных растворов принцип единого базового состава композиции, направленного на регулирование структуры и свойств варьированием в определенных пределах соотношений основных компонентов и введением малых количеств структурно-активных добавок.
На базе разработанных рецептур модифицированных минеральных растворов были также внедрены обмазочные составы, которые отличаются от домазочных технологичностью (нанесение кистью) и повышенной адгезией к обрабатываемым поверхностям, что позволило наносить такие составы тонким (1–2 мм) слоем. Особенно эффективна обмазка для придания однородности и эстетического вида кирпичной кладке.
В настоящее время прорабатывается возможность изготовления по специально подобранным рецептурам докомпоновочных, формовочных и обмазочно-защитных материалов в виде готовых сухих смесей, позволяющих обеспечить высокое качество и воспроизводимость реставрационных составов на объекте. Подбор рецептур таких смесей осуществляет технолог-реставратор по результатам выполненного технологического обследования материалов памятника.
Под воздействием ряда разрушающих факторов: атмосферной и грунтовой влаги, температурных перепадов, агрессивных веществ, содержащихся в атмосфере, происходит постепенное изменение структуры и свойств (деструкция) белого камня – основного строительного материала древнерусского зодчества. Небольшие изменения чаще всего наблюдаются в поверхностных слоях камня (до 3–5 см), эти же слои подвергаются загрязнению и биопоражению. Для продления срока службы старой белокаменной кладки и декора необходимо упрочнение поверхностных слоев камня.
Мировая практика применения различных укрепляющих составов для камня памятников архитектуры показала, что наиболее перспективным является применение кремнийорганических соединений типа оксисиланов. Это мономерные жидкости, хорошо смачивающие камень и впитывающиеся в него, которые под влиянием воды (присутствующей в порах камня, вводимой консервирующим раствором или влаги воздуха) гидролизуются с образованием трехмерного геля кремниевой кислоты, который выстилает изнутри поры камня и тем самым упрочняет его. Это процесс эффективно регулируется катализаторами.
Институтом «Спецпроектреставрация» в 1984 г. были разработаны двухкомпонентные составы для укрепления камня – кремнийорганические укрепляющие составы (КУС) и гидрофобные кремнийорганические укрепляющие составы (ГКУС), основными компонентами которых является тетраэтоксилан (ТЭС). Впоследствии, в 1986–1988 гг. эта методика была усовершенствована и включила обязательную очистку камня нейтральным моющим составом, пропитку консервирующим составом (ТЭС) с последующей обработкой водным катализатором при этом прочность камня (известняка) повышалась в 1,5–2 раза, морозостойкость увеличивалась до 30 циклов при незначительном уменьшении (до 10%) водопоглощения и паропроницаемости.
В середине 1990-х годов НПО «Космос» разработало однокомпонентный укрепляющий состав «148-бис.» на основе силиконов, промышленно выпускаемых в настоящее время АО «Сихлон». Этот состав предназначен для структурного укрепления строительных материалов (кирпича, известняка, бетона, природного камня, асбестоцемента и др.), повышения их атмосферо- и морозостойкости. Для защиты поверхности кирпичной и белокаменной кладки от воздействия влаги и биопоражения в реставрационной практике применяются гидрофобизирующие кремнийорганические жидкости (ГКЖ) типа ГКЖ-94, ГКЖ-136-41 (ГОСТ10834-76) в виде 3 – 5% растворов в органических растворителях. Они способны глубоко проникать вглубь материала и надолго сохранять водогрязеотталкивающий эффект (

Читайте так же:
Чем утеплить керамзитобетонные блоки под облицовочный кирпич

Древнерусский раствор оказался лучше современного цемента

Древнерусский строительный раствор оказался по нескольким параметрам лучше, чем современный цемент. Подробностями строительства крепостей на Руси в XVI-XVII веках руководитель исследования поделился с корреспондентом Infox.ru.

Российские историки уже давно занимаются изучением истории и техники древнерусского строительства. Как пояснил корреспонденту Infox.ru кандидат исторических наук Константин Носов из Российской академии государственной службы при президенте РФ в Москве, «все каменные или кирпичные сооружения на Руси строились с использованием специального строительного раствора». Изучение состава этого раствора помогает ученым не только понять методику строительства, но и точнее датировать архитектурный памятник, создать похожий раствор для проведения реставрационных работ, определить, где именно добывались составляющие раствора, и отнести архитектурный памятник к определенной строительной школе.

Впервые этим вопросом историки занялись еще в 1930 году, однако до сих пор про растворы известно немного. По словам Носова, дело в том, что до настоящего времени ученые использовали каждый свой метод анализа, да и обработали небольшое количество образцов. В основном исследователей интересовали домонгольские сооружения: ученые исследовали около 90 древнерусских памятников, из которых 70 датируются XI-XIII веками.

13 образцов на анализ

Команда российских ученых под руководством Носова решила провести комплексный анализ образцов раствора более позднего периода. Ученый лично взял 13 образцов строительных растворов русских крепостей XVI-XVII веков в Нижнем Новгороде, Коломне, Зарайске, Серпухове, Борисовом городке, Смоленске и Вязьме. Для сравнения он также изучил образцы современного раствора в Смоленске и средневековых укреплений в Англии и в Уэльсе (замок в Чепстоу, городские стены в Конуи и в Кембере). Сложность работы заключалась в том, чтобы найти тот участок крепости, где не проводились реставрации и не применялись более поздние растворы (например, в случае с Московским Кремлем найти кладку конца XV века практически невозможно, так как крепость слишком часто ремонтировалась).

Что такое строительный раствор?

Строительный раствор состоит из двух компонентов: вяжущего вещества и заполнителя. Иногда к ним подмешивают и специальные добавки. На Руси в качестве вяжущего элемента использовалась известь: известняк, мел и другие карбонатные породы обжигались в специальных печах. К полученной смеси добавляли воду, в результате чего образовывалась гашеная известь, получалось этакое строительное «тесто». Однако такой материал быстро трескался. Поэтому к извести добавляли заполнитель, например песок, значительно улучшавший качество строительного раствора.

Ученые определили прочность разных строительных растворов, процентное соотношение вяжущего элемента и заполнителя, их состав и дополнительные примеси (например обломки кирпича или кирпичная мука, шлак, раковины и т. д.).

Как и из чего строили в XVI веке?

В Смоленске Носов брал четыре образца раствора из разных мест. Оказалось, что их составы довольно сильно отличаются между собой. Как пояснил ученый корреспонденту Infox.ru, видимо, у древних мастеров не было устоявшейся рецептуры приготовления этого вещества, и каждый раз получалось по-разному.

Образец современного раствора, использованный реставраторами, оказался весьма похож на древнерусский, однако оказался плохо перемешан. Зато средневековые образцы из Уэльса и Англии очень похожи на русские растворы XVI-XVII веков.

Несмотря на все полученные данные, ученым еще предстоит выполнить большую работу, чтобы сделать выводы об общей эволюции строительных растворов на Руси и их использовании в культовых, военных и гражданских сооружениях. По словам Носова, также интересно было бы сравнить древнерусские растворы с итальянскими, так как в Россию приезжали и иностранные мастера, например Аристотель Фиораванти (примерно 1415—1486), который построил Успенский собор в Москве.

Читайте так же:
Сколько весит 1м3 цемент м500

Статья об исследовании строительных растворов русских крепостей XVI-XVII веков опубликована в журнале «Российская археология» (№ 1, 2009).

Огнеупорный цемент: характеристики, область применения, отличительные черты

Отстраивая и благоустраивая свое жилье, владелец нередко старается создать там зону особого комфорта. Частный дом, коттедж, дачу или иное индивидуальное строение отлично украшают камины и оригинальные печи. Не помешает и отдельная зона для приготовления барбекю для веселой компании. Но, чтобы построить безопасную конструкцию, способную прослужить не один год, нужно подбирать особые материалы высокого качества. К таким относится и огнеупорный цемент.

Эксплуатационные характеристики

Положительные свойства у огнеупорной смеси следующие.

  1. Он обладает особой устойчивостью к повышенной температуре — выдерживает открытый огонь и жар от 2000 до 3500 градусов Цельсия.
  2. Весьма прочен. Так, чем больше цемента в приготовленном растворе, тем прочнее получится смесь. Разгадка — в керамических сцеплениях, которые образуются при нагревании.
  3. Быстро затвердевает. Уже через 20 часов можно эксплуатировать созданное изделие, что является рекордом среди прочих строительных модификаций.
  4. Огнеупорный цемент не уступает обычному ни в вязкости, ни в сцепляемости.
  5. Ни коррозии, ни быстрое разложение описываемому виду не страшны. Алюминат кальция придает цементу коррозийную стойкость.
  6. Поскольку в составе отсутствует влага, у жаропрочного цемента ярко выражены неэлектропроводные свойства.
  7. Приготовить смесь весьма легко: достаточно смешать обычную воду, простой песок и жаропрочное связующее.
  8. Особые клеевые гранулы, входящие в состав материала, делают сцепление кирпичной кладки надежной и устойчивой, блокируют пустоты, препятствуя тем самым выходу воздуха наружу. Изготовленные с использованием описываемого материала печи и камины не дымят.

Если планируется построить конструкцию, способную выдержать температуру до 1600 градусов Цельсия, в смесь обязательно добавляются шлаки алюмотермического происхождения (например, алюминаты кальция с концентрацией более 75%).

Но и на минусах следует заострить особое внимание. Впрочем, их не так и много.

  1. При определенных условиях материал может выделять неприятный для пользователя запах.
  2. Стоимость термостойкой смеси значительно выше, чем обычного цемента, поэтому при покупке больших объемов материала это довольно ощутимый недостаток.

Типовой состав для изготовления 1 кубического метра огнеупорного бетона: 300 кг глиноземистого цемента, 1200 кг шамотного или хромитового щебня, 750 кг шамотного или хромитового песка, 160-170 литров воды.

Маркировка и состав

Огнеупорные составы различаются по маркам: от 100 до 600. Цифры обозначают прочность при степени сжатия от 100 до 600 бар.

Еще одно разделение — по классам: от 30 до 60, в зависимости от сжатия.

Отличие марок от классов заключается в расчете прочности, которая выводится по обеспеченности 95% (из 100 образцов 95 должны обязательно соответствовать классу).

Маркировка от 40 до 60 наносится на глиноземистые составы, которые популярны в строительных, топливных и энергетических отраслях. Самый ходовой — ГЦ-40. Он создается по ГОСТу 969-91 и состоит из извести (или породы с большой долей чернозема в составе) и известняка. Не теряет свойств даже при температуре 1700 градусов. У ГЦ-50 и 60 прочность еще выше, но отмечается выделение неприятного запаха в процессе эксплуатации.

ГЦ-70, 75, ВГЦ-I-35, ВГЦ-75-05 отличаются повышенными огнеупорными параметрами за счет улучшения качества смеси (это высокоглиноземистый цемент), а также отсутствием неприятного амбре.

ГЦ и ВГЦ изготавливаются при помощи плавки, в сочетании с хромитовой рудой или магнезитом участвуют в создании гидравлически твердеющих растворов.

Отличие от других видов цемента

Основное отличие — в термостойкости. Даже длительное воздействие высоких температур на устойчивость постройки не влияет, в отличие от традиционных типов цемента — шлакового раствора или портландцемента. Они начинают деформироваться уже при 250 градусах, вследствие чего в стенах конструкций появляются трещины.

В состав огнеупорного цемента могут входить:

  • щелочные соединения металлов (5-20% от общего объема);
  • шлаки гранулированные (от 50 до 90% объема смеси);
  • добавки, обеспечивающие устойчивость к повышенным температурам (5-40%).

Подготовка при использовании огнеупорных смесей такая же, как и при использовании обычного цемента. Очистите поверхность от пыли сажи при помощи влажной тряпки или пылесоса, а затем удалите с нее масляные подтеки и жировые пятна (используя специальный растворитель). Раствор изготавливается строго по инструкции производителя, желательно с применением бетономешалки. Кладка кирпичей осуществляется стандартным способом, с тщательным заполнением швов раствором. Нельзя допускать образования воздушных полостей!

Делаем цемент своими руками – готовые рецепты

Добавление статьи в новую подборку

Для мелкой работы иногда так не хватает какой-нибудь «волшебной» смеси, которая позволила бы заделать трещину или щель и при этом была абсолютно безопасна. Разновидностью такой смеси является «домашний цемент».

Цемент – один из древнейших материалов известных человечеству. Общее наименование объединяет искусственные неорганические материалы, которые при взаимодействии с водой образуют вязкую массу. Со временем она затвердевает и превращается в твердый состав. Поэтому цемент используют для изготовления монолитных конструкций и скрепления иных строительных материалов. Однако «цементом» можно с допущением назвать любую смесь, которая служит для укрепления или склеивания различных предметов. Мы рассмотрим способы получения различных вариантов «домашнего цемента», которые пригодятся для хозяйственных нужд.

Читайте так же:
Затирка литокол цементная инструкция

Цемент «на скорую руку»

Ингредиенты для приготовления цемента можно купить в строительном магазине

Иногда для того, чтобы замазать небольшое отверстие, нет смысла покупать огромный мешок цемента. Можно развести прямо в домашних условиях несколько составов, необходимых для заделки небольших щелей и трещин. Приводим наиболее опробованные рецепты:

  • водоупорная замазка для быстрого устранения протечки. 10 частей порошка едкой извести смешайте с 2 частями воды и 12 частями сухой творожной сыворотки;
  • цемент для заделки щелей и трещин в комнатных полах. К водной извести добавляйте каменноугольную золу и воду, пока не получится густая, кашеобразная смесь;
  • замазка для железа. Необходима в случаях, когда в котлах или емкостях появились трещины, скважины или дыры. Возьмите 30 частей графита, истолченного почти до состояния порошка. Затем добавьте 15 частей едкой извести и 40 частей баритовых белил (бланфикса). Все это смешайте с лаком и льняным маслом пока не получится густая смесь;
  • печная замазка. В одинаковой пропорции возьмите песок, костный уголь, графит и водную известь и смешайте со свежим творогом или бычьей кровью. Наносить состав следует сразу после приготовления.

Цемент для стекольных работ

Заделать разбитое стекло можно разными составами

Подклеить или замазать щели во время проведения работ по остеклению или иных похожих мероприятий можно при помощи домашних смесей.

1. Для склеивания стеклянных предметов:
  • на 1 часть порошковой едкой извести возьмите 2,5 доли свежего яичного белка и тщательно перемешайте. Затем добавьте 1 часть воды и 5,5 частей гипса и сразу же нанесите на куски стекла. Состав употребляют сразу, хранению он не подлежит;
  • 10 частей желатина добавьте в кастрюлю и поставьте на слабый огонь. Как только состав нагреется, к нему прибавьте 15 частей уксусной эссенции. После этого внесите 5 частей двухромовокислого аммония в форме порошка. Полученный состав моно используйте сразу или храните в темной таре в помещении, в которое не попадают солнечные лучи;
  • 80 частей белового вара (пека, твердой части смолы хвойных деревьев) вскипятите до тех пор, пока вся вода не испарится. После этого емкость с варом снимите с плиты и добавьте 12 частей сала. Также постепенно досыпьте порошок красной охры до тех пор пока масса не достигнет твердой консистенции. Непосредственно перед употреблением разогрейте цемент, пока он не станет мягким, и нанесите на склеиваемую поверхность. Цемент быстро затвердеет и отлично будет отлично держать стекло.
2. Для наклеивания стекла:
  • на слабом огне растворите 125 г порошкообразной канифоли, 35 г белого воска и 75 г железного сурика (парижская или английская красная краска, колькотара). Когда все расплавится до жидкого состояния, снимите состав, а огонь погасите. Убедившись, что источников огня поблизости нет, добавьте 18 г очищенного скипидара (терпентина) и размешайте деревянной палочкой, пока смесь не охладится. После этого цемент можно наносить;
  • на 10 частей расплавленной обыкновенной смолы возьмите 1 часть желтого воска и при помощи полученной смеси наклейте стекло на металл.

Как быстро склеить ручки ножей и вилок

Ручки ножей и вилок часто отлетают просто от старости

С годами у вилок и ножей часто отлетают ручки. Чтобы фамильная драгоценность прослужила долго, ее следует надежно «зацементировать». Например, одним из следующих способов:

  • наполните порошком канифоли все полости в ручке, затем нагрейте металлическое основание вилки или ножа и вставьте его в отверстие. Порошок расплавится, остынет и затвердеет, плотно удерживая металл в ручке. Недостаток данного метода – приборы нельзя мыть в горячей воде – канифоль может снова расплавиться;
  • улучшенной версией описанного состава являются следующие: 1 часть воска смешивают с 3 частями канифоли, расплавляют и заливают в отверстия. Еще можно взять 2 части шеллака и примешать 1 часть мела;
  • для металлических ручек рекомендуется взять 3 части серы и расплавить их в 5 частях канифоли и 1 части минерального воска (церезина). Когда полученная смесь станет однородный массой добавьте к ней 2 части мелкотолченого кирпича. Горячей массой наполняют отверстия и вставляют туда ножи и вилки. Держится все очень надежно.

Состав для восстановления глиняной посуды

В детстве сироп делали для развлечения, но он может заделывать и трещины

В разбитый горшок или чашку положите 3-4 куска сахара, залейте их небольшим количеством воды и поставьте на сильный огонь. Когда сахар превратится в сироп, облейте им трещину несколько раз, удерживая посуду на огне. Сироп проникает в поры трещин и обугливается, надежно заполняя трещины. Такой метод абсолютно безопасен для пищевых емкостей, поскольку не имеет посторонних и искусственных примесей. Обработанная с его помощью посуда прослужит еще очень долго.

Читайте так же:
Как приготовить цементный раствор для заливки дорожки

Секретный китайский цемент

Гашеная известь плохо растворяется в воде

Рецепт приготовления уникального цемента Чио Лиао долгое время оставался неизвестен. И это при его феноменальной универсальности – он годится для склеивания фарфоровых, фаянсовых, мраморных, кожаных, гипсовых и многих других изделий. Как оказалось, приготовить его очень просто. Возьмите 54 части гашеной извести и смешайте с 6 частями квасцов в порошке. После этого добавьте 40 частей взбитой свежей крови (курицы, теленка или свиньи). Конечную смесь перемешивают до однообразной консистенции в виде теста. Она наносится на склеиваемые поверхности.

В жидком виде состав наносят как краску на поверхности, которые хотят защитить от влаги и механических повреждений. Два-три слоя «китайской краски» придают листу картона прочность дерева.

Эти простые и удобные рецепты помогут вам изготовить цемент на скорую руку и справится с несложной домашней работой. Выдерживайте правильные пропорции и успевайте равномерно нанести состав – тогда любые предметы прослужат очень долго.

Стеклоиономерные цементы (стеклоиономеры)

Стеклоиономерные цементы (стеклоиономеры)

Стеклоиономерные цементы (СИЦ) целый класс современных стоматологических материалов, созданных путем объединения свойств силикатных и полиакриловых систем. Пломбирование зубов с применением стеклоиономерных цементов постепенно вытесняет из стоматологической практики цинк-фосфатные и цинк-поликарбоксилатные цементы. Классификацию стеклоиономерных цементов принято проводить по ряду признаков.

По их применению. Для постоянных пломб (эстетические, упроченные), быстротвердеющие (для прокладок, герметизации фиссур), для пломбирования корневых каналов, для фиксации ортопедических конструкций.

    По форме выпуска:

  • порошок-жидкость (порошок – мелкодисперсное алюмофторсиликатное стекло с различными добавками, жидкость – водный раствор сополимера карбоновых кислот с добавкой винной кислоты);
  • порошок (все компоненты находятся в порошке, который замешивается на дистиллированной воде; т.н. Аквацементы);
  • капсулы (порошок и жидкость рафасованы в капсулы с тонкой перегородкой в необходимом соотношении, поэтому при смешивании получается стеклоиономерный цемент с оптимальными свойствами);
  • паста (в тубах или шприцах); не требуют замешивания и отвердевают при облучении галогеновой лампой.
  • В зависимости от химического состава механизма отвердения.

    1. Классические (порошок-жидкость). Порошок мелкодисперсноеалюмофторсиликатное стекло (размеры частиц 20-50 мкм). Компоненты порошка: диоксид кремния, оксид алюминия, фторид кальция, фториды других металлов (обеспечивающие фторвыделение для профилактики кариеса), фосфат алюминия (обеспечивает прочность и устойчивость к истиранию), соли бария, цинка, стронция и др. (обеспечивают рентгеноконтрастность). Жидкость – водный раствор сополимера поликарбоновых кислот (акриловой, итаконовой, малеиновой) с добавкой изомера винной кислоты. В случае Аква-цементов (только порошок, который замешивается на дистиллированной воде) поликарбоновые кислоты входят в состав исходного порошка в виде кристаллов. В металлосодержащих стеклоиономерных цементах в состав порошка дополнительно вводятся металлические добавки и сплавы (серебро-олово, серебро-палладий). Отвердение классических стеклоиономерных цементов происходит по типу ионообменной реакции (отсюда название – стеклоиономер): ионы водорода (присутствующие в водном растворе поликарбоновых кислот) обмениваются с ионами металлов (кальция, алюминия) стекла, ионы кальция и алюминия связывают гидроксильные группы цепей поликарбоновых кислот (образуется матрица полиакрилата металла, в которой расположены непрореагировавшие частицы стекла). В начальной стадии отвердения достаточно быстро формируются кальциевые полиакриловые цепочки. Эта реакция обеспечивает схватывание цемента и длится несколько минут. Однако эффективность связывания ионами кальция недостаточно высокая и на ранних стадиях отвердевания кальций-полиакриловые цепочки могут растворяться в воде (поэтому цемент должен быть на это время защищен от влаги). Когда ионы кальция прореагировали, вступают в реакцию ионы алюминия и формируются алюминий-полиакриловые цепочки. Трехвалентная природа алюминия (в отличие от двухвалентной кальция) обеспечивает более высокую степень поперечного сшивания и образование пространственной структуры. Именно на этом этапе происходит формирование окончательной матрицы цемента. Завершение второй фазы наступает примерно через 2-3 недели (ускорить процесс отвердения позволяет применение гибридных стеклоиономеров, которые уже на начальном этапе фотополимеризации в течение ок. 40 сек набирают достаточную прочность). Дополнительно на поверхности стеклянных частиц происходит образование силикагеля (прочная структура). В итоге окончательная структура отвердевшего стеклоиономерного цемента представляет собой частицы стекла, окруженные силикагелем и расположенные в матрице поперечносшитых молекул поликарбоновых кислот (полиакрилата металла).
    2. Гибридные стеклоиономерные цементы (стеклоиономерные цементы, модифицированные полимером). Имеют двойной (химический и световой) или тройной механизм отвердевания. Порошок – мелкодисперсное алюмосиликатное стекло (как и в случае классических стеклоиономерных цементов), иногда с добавками кристаллов сополимера поликарбоновых кислот (как и в случае Аква-цементов). Жидкость – водный раствор сополимера поликарбоновых кислот (акриловой, итаконовой, малеиновой), концы молекул которых модифицированы присоединением ненасыщенных метакрилатных групп (как у диметакрилатов композитных пломбировочных материалов). В состав жидкости входит также винная кислота, гидроксиэтилметакрилат и камфарохинон (фотоинициатор). Первой стадией механизма отвердения является реакция связывания концевых ненасыщенных метакрилатных групп поликарбоновых кислот за счет фотоинициированного образования концевых радикалов (фотополимеризация). Вторая стадия – обычная классическая реакция сшивания макромолекул поликислот ионами металлов. Гибридные стеклоиономерные цементы (с двойным механизмом отверждения) имеют улучшенные физико-химические качества, но и существенный недостаток: в участках, недоступных для проникновения света фотополимеризующей лампы, отвердение происходит только за счет классической химической реакции (что сказывается на физико-химических характеристиках стеклоиономерных цементов). Этого недостатка лишены стеклоиономерные цементы с тройным механизмом отверждения (первые две стадии – как у стеклоиономерных цементов двойного отверждения, а третья стадия – каталитически инициированная полимеризация концевых метакрилатных групп поликарбоновых кислот без воздействия света).
    Читайте так же:
    Пропорции для цементной стяжки с жидким стеклом

    Указанная классификация условна, поскольку в последнее время появилось много модифицированных стеклоиономерных цементов: с добавками полимерных смол, со специально обработанными мелкодисперсными частицами стекла и т.д.

    Очень важное достоинство стеклоиономерных цементов – хорошая химическая адгезия к тканям зуба. Считается, что это происходит вследствие образования хелатных связей между гидроксильными группами поликарбоновых кислот и ионами кальция поверхностного гидроксиапатита (аналогично классической химической реакции сшивания при отвердении стеклоиономерных цементов), а также вследствие образования водородных связей карбоксилатных групп с коллагеном (органический компонент зубных тканей).

    Среди других достоинств стеклоиономерных цементов – хорошая химическая адгезия к другим пломбировочным материалам (в т.ч. композитам), высокая биологическая совместимость с тканями зуба, близкие к тканям зуба характеристики теплового расширения (что предохраняет от нарушения краевого прилегания пломб), низкий модуль упругости (что позволяет использовать стеклоиономерные цементы в качестве прокладок или базы под реставрацию зубов композитными материалами).

    Стеклоиономерные цементы обладают биоактивностью, что связано не только с химической адгезией к структурам зуба, но и с продолжительным фторвыделением и выделением других ионов (алюминия, кальция, стронция; способствуют реминерализации структур зуба при кариозном поражении). Все остальные реставрационные материалы (например, композиты) не являются биоактивными и служат только для восстановления формы и эстетики зуба. В начальный период (около 2-х суток) отвердения стеклоиономерных цементов происходит быстрое высвобождение ионов фтора, которые остаются свободными в пределах стеклоиономерной матрицы. Свободное движение (диффузия) ионов фтора обусловлено тем, что они структурно не связаны с матрицей цемента с способны к миграции в полость рта и в ткани зуба, смежные с реставрацией (пломбой), оказывая при этом кариесостатическое и антибактериальное действие. Выделение ионов фтора (в меньших количествах) происходит и в дальнейшем в течение длительного периода (пролонгированный процесс, более 1 года). Диффузия ионов фтора в дентин и эмаль вызывает усиление минерализации твердых тканей зуба, уменьшение проницаемости дентина, реминерализацию начальных кариозных повреждений и остановку или замедление оставшегося кариозного процесса. Твердая ткань под стеклоиономерным цементом оказывается более плотной, гиперминерализованной. Кроме того, стеклоиономерные цементы способны адсорбировать (поглощать) ионы фтора при контакте с фторсодержащими материалами (зубными пастами, гелями, растворами для полосканий), что приводит к повторному обогащению стеклоиономерной реставрации (пломбы) ионами фтора. Поступившие ионы фтора затем медленно высвобождаются в полость рта и ткани зуба, смежные с реставрацией (пломбой). Таким образом, стеклоиономерный цемент действует как резервуар (депо) ионов фтора. В последние годы стеклоиономерные цементы все чаще используют для герметизации фиссур (в первую очередь – вследствие реминерализующего действия на эмаль в области фиссуры за счет фторовыделения).

    Типичными представителями современных стеклоиономерных цементов являются следующие.

    Фуджи Плюс (Fuji Plus) – усиленный композитом стеклоиономерный цемент. Используют для постоянного цементирования металлических, металлокерамических и металлокомпозитных коронок и мостовидных протезов, вкладок и накладок из композитов, керамики и стоматологических сплавов.

    Фуджи I (Fuji I) – стеклоиономерный цемент для постоянного цементирования ортопедических коронок, мостовидных протезов, вкладок, накладок из любых стоматологических сплавов.

    Фуджи IX (Фуджи 9, Fuji IX) – классический стеклоиономерный реставрационный (пломбировочный) цемент пакуемой вязкости (термин “пакуемый” означает сохранение формы, приданной материалу еще до стадии его отверждения, что позволяет врачу-стоматологу легко выполнять этап предварительного моделирования). Вследствие высокой устойчивости к истиранию применяют для реставраций (пломбирования) в области жевательных зубов, реконструкции коронковой части зуба.

    Фуджи Лайн (Fuji Lining) – светоотверждаемый стеклоиономерный цемент. Имеет низкую усадку при отвердевании, поэтому используют в качестве изолирующей прокладки.

    Ионозит бейслайн (Ionosit Baseliner) – светоотверждаемый гибридный стеклоиономерный цемент (чаще относят к компомерам). Однокомпонентный материал, который при отверждении слегка расширяется и поэтому используется в качестве изолирующей прокладки, компенсирующей полимеризационную усадку композитов. По физическим свойствам приблизительно в 3 раза прочнее, чем традиционные стеклоиономерные цементы.

    ТаймЛайн (TimeLine) – светоотверждаемый стеклоиономерный материал. Используют в качестве изолирующей прокладки под композитные пломбы (реставрации).

    Кор Макс (CORE MAX) – стеклоиономерный цемент, усиленный композитом (иногда относят к композитам химического отверждения). Особо прочный цемент для восстановления коронковой части зуба с использованием штифтов. Релайкс Леи (RelyX LUTING) – гибридный стеклоиономерный цемент химического отверждения. Используют для постоянного цементирования ортопедических коронок, вкладок из керамики, металлов, композитов, цементирования мостовидных протезов, корневых штифтов. Ионосил (Ionoseal) – светоотверждаемый стеклоиономерный цемент. Отличается высокой прочностью на разрыв и устойчивостью к сжатию. Используют для изолирующих прокладок (имеет хорошую адгезию к композитным материалам). Витремер (Vitremer) – эстетичный гибридный стеклоиономерный материал с тройным механизмом отверждения (светополимеризация, химическая полимеризация, классическая стеклоиономерная реакция). Используют для восстановления коронковой части зуба под протезирование, эстетического пломбирования и реставрации.

    Сияющая голливудская улыбка от ведущих специалистов терапевтической стоматологии. Запишитесь на прием!

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Adblock
    detector