Omskvorota.ru

Строим дом
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Химический состав цементного камня

Свойства цемента

Долговечность цементного камня — способность цементного камня сохранять необходимый уровень строительно-технических свойств пои длительной эксплуатации. Исходя из термодинамической устойчивости продуктов твердения цемента, можно было бы сделать предположение о высокой (сотни и тысячи лет) долговечности цементного камня, однако прямых подтверждений такой стабильности цементного камня нет, поскольку портландцемент был изобретён лишь в 1824 г., а лабораторный прогноз долговечности ненадёжен. Кроме того, существует большое число трудноучитываемых факторов, способствующих разрушению цементного камня при длительной эксплуатации, обусловленных, прежде всего, его щелочной природой (рН>12), а также пористой структурой, проницаемостью её для газов, воды и растворов, т.е. цементный камень склонен к химическому взаимодействию с окружающей средой.

Можно выделить внутренние и внешние факторы риска разрушения (ограниченной долговечности) цементного камня.

К внутренним факторам, наряду со щелочной природой цементного камня, следует отнести возможность проявления цементным камнем «неравномерности изменения объёма», высокие усадочные деформации при высушивании и деформации набухания при увлажнении, а также формирование недостаточно плотной (проницаемой) поровой структуры.

Внешние факторы недолговечности определяются конкретными условиями эксплуатации (службы) цементного камня. Эти факторы могут быть причиной разрушения цементного камня при его многократном замораживании и оттаивании в насыщенном водой состоянии, а также в результате химической (сульфатной, углекислотной, щелочной) и биохимической коррозии (воздействие бактерий, грибков, мхов и т.п.). К факторам риска относятся также многократный нагрев (особенно выше 200°С) и охлаждение цементного камня, а также его попеременное увлажнение и высушивание, провоцирующие высолообразование.

Проектирование долговечных конструкций на портландцементе основывается на необходимости получения прочного камня с низкой проницаемостью и защищённой от агрессивных воздействий поверхностью. Гарантированный срок службы такого материала, в зависимости от условий эксплуатации, может составить 50-100 лет и более.

Морозостойкость цементного камня

Морозостойкость — способность цементного камня противостоять многократному попеременному замораживанию и оттаиванию в насыщенном водой состоянии.

Критерием морозостойкости цементного камня является сохранение им после определённого количества циклов замораживания-оттаивания (25, 50, до 500 и более) исходной прочности: потеря прочности при сжатии не должна превышать 5%, а потеря массы — 3% (при стандартных базовых испытаниях бетона по ГОСТ 10060.1). Для определения морозостойкости, кроме прямого замораживания при (-15+ -20)°С и оттаивания образцов в воде при (+15-и-20)»С, применяют также ускоренные методы, основанные на использовании вместо воды раствора Na2SO4 и NaCl, и замораживание при температуре -50°С (ГОСТ 10060.2, ГОСТ 10060.4). Основным фактором устойчивости к замораживанию является структура порового пространства. При проникновении воды в поры и понижении её температуры до точки замерзания образующийся лёд увеличивается в объёме примерно на 9%, что приводит к возникновению в структуре материала высоких механических напряжений и соответствующих им деформаций. Если все поры в материале будут заполнены водой, разрушение должно произойти уже после первого цикла замораживания. Повышение морозостойкости может быть обусловлено формированием в структуре определённого объёма пор, не заполняющихся водой, в которые отжимается часть воды при замораживании. В частности, при твердении цементного камня возникает система пор, заполненных паровоздушной смесью, так называемые «резервные поры», наличие которых и определяет морозостойкость цементного камня. Разрушение материала происходит тогда, когда объём «резервных пор», в которые может отжиматься вода, мал по сравнению с объёмом образующегося льда, или когда в результате многократно повторяющихся циклов замораживания все поры будут постепенно заполнены водой. Чем выше относительный объём «резервных пор» по сравнению с общим объёмом пор, заполненных водой, тем выше морозостойкость раствора, бетона. Основными источниками таких резервных пор являются поры C-S-H геля, а также контракционные поры, образовавшиеся в ходе гидратации и твердения цемента. Если объём этих пор оказывается недостаточным для достижения заданной морозостойкости бетонов и растворов, в их состав вводят специальные воздухововлекающие добавки, обеспечивающие дополнительное количество резервных пор.

Применительно к сухим строительным смесям морозостойкость составов, предназначенных для работы в атмосферных условиях, например, фасадных, обеспечивается путём минимизации капиллярной пористости и формирования дополнительного количества «резервных пор» за счет:
оптимизации гранулометрии заполнителя и наполнителя и соотношения цемент-заполнитель в составе смеси;
минимизации величины В/Ц;
применения высокоактивных быстротвердеющих цементов, обеспечивающих в ранние сроки твердения в цементном камне высокое содержание C-S-H геля;
применения воздухововлекающих добавок.

Пористость цементного камня

Модель структуры цементного камня можно упрощённо представить как состоящую из трёх составляющих: непрореагировавших с водой полиминеральных частиц клинкера, продуктов гидратации цементных минералов — цементного геля (CSH-геля) и пор разного размера: пор геля и капиллярных пор, а также контракционных пор, образовавшихся из-за уменьшения суммарного объёма твердеющей системы: цемент-вода. Структура цементного камня включает также воздушные поры (пустоты), образовавшиеся при перемешивании цементного теста.

Капиллярные поры различаются по форме и размеру, формируя на ранних стадиях гидратации взаимосвязанную систему, распределённую по объёму цементного камня. Капиллярные поры — это та часть общего объёма системы цемент-вода, которая не заполнена продуктами гидратации. Капиллярная пористость зависит от водоцементного отношения В/Ц) исходной смеси и от степени гидратации цемента. Поскольку абсолютный объём продуктов гидратации в 1,5-2 раза превышает объём входных негидратированных фаз, эти продукты занимают часть начального порового пространства, а по мере гидратации цемента объём капиллярных пор уменьшается. При достижении определённой степени гидратации цементный гель блокирует капиллярные поры в формируются структуре, поскольку средний размер микропор цементного геля 1,5-2,0 нм) на несколько порядков меньше размера капиллярных пор. Поры геля занимают около 28% общего объёма цементного геля. Размеp капиллярных пор находится в широких пределах — от десятков нанометров до 100 мкм и более, а объём капиллярных пор может достигать 40% и более в зависимости от В/Ц, характеристик цемента (фазового состава, дисперсности), степени гидратации цементных минералов, условий твердения и т.д.

Капиллярная пористость цементного камня тем больше, чем выше начальное значение В/Ц и чем меньше степень гидратации активных фазовых составляющих цемента. Во всех случаях, в ходе гидратации цемента значение общей и капиллярной пористости цементного камня снижается, а капиллярные поры замещаются микропорами геля и порами, образующимися вследствие химической усадки (контракции).

Читайте так же:
Сколько цемента нужно для 1 куба бетона м 500

Усадка цементного камня

Усадка — это естественное свойство Цементного камня, выражающееся в уменьшении его объема и массы. При первичной потере влаги цементным образцом необратимые деформации усадки составляют 30-50% от общей усадки. При последующем переменном увлажнении и высыхании наблюдаются обратимые знакопеременные деформации усадки-набухания. При усадке в пределах до 0,2-0,6% в цементном камне нет видимых трещин, при больших деформациях наблюдаются характерные усадочные трещины, свидетельствующие о трещи но нестойкости цементного камня.

Усадку цементного камня связывают со следующими явлениями: при относительной влажности 45-90% преобладают вызывающие усадку напряжения, связанные с испарением воды из капилляров определённого размера, при относительной влажности менее 20% и удалении адсорбированной воды преобладает эффект поверхностного сжатия твёрдой фазы. Другой составляющей усадки при высыхании цементного камня является нарушение ион-дипольного взаимодействия при удалении молекул воды как из пространства между частицами, так и потеря межслоевой воды C-S-H гелем.

Основные факторы, влияющие на величину усадки цементносодержащих материалов при высыхании, следующие:

  • повышенное количество цемента в растворах и бетонах;
  • усадка в большей степени проявляется при твердении и службе изделий в условиях повышенных температур и низкой относительной влажности;
  • цементы особотонкомолотые (S>500 м2/кг) проявляют большую склонность к усадке;
  • увеличение значения В/Ц при прочих равных условиях приводит к росту усадочных деформаций;
  • минералогический состав клинкера незначительно влияет на усадочные деформации, хотя имеется тенденция к увеличению деформаций при переходе к высокоалюминатным цементам и особенно к цементам белитового состава;
  • увеличенные деформации раствора (бетона) наблюдаются при повышенном содержании в их составе тонкодисперсных наполнителей (зол, шлаков, минеральных наполнителей).

Усадка при высыхании может быть существенным недостатком и требует регулирования и контроля для многих видов сухих строительных смесей: шпатлёвок, затирок, смесей для устройства полов.

Химический состав цементного камня

Известно, что микрокремнезем (МК) в сочетании с водоредуцирующей добавкой повышает прочность, водонепроницаемость, сульфатостойкость и другие свойства бетонов Особенности структуры цементного камня с МК заключаются в характере распределения пор. Они свойственны цементному камню и бетонам с добавкой МК, содержащей диоксид кремния не менее 85 %. Так как МК является отходом производства, его физико-химические свойства, в частности дисперсность и содержание диоксида кремния, во многом зависят от качества сплавов [3].

В НИИЖБе исследовали особенности структуры цементного камня, прочность н проницаемость бетонов в зависимости от вида и количества МК, а также водоредуцирующей добавки. При этом рассмотрели три вида МК, отличающихся содержанием диоксида кремния и дисперсностью. Образцы МК являлись отходами производства кристаллического кремния Братского алюминиевого завода, низкомарочного ферросилиция Ермаковского и ферросиликохрома Актюбинского ферросплавных заводов (марки Бкр, Ефс, Афсх). Основные физико-химические свойства МК приведены в табл. 1.

Для экспериментов применяли портландцемент марки 400 Подольского завода без минеральных добавок, соответствующий ГОСТ 10178, кварцевый песок фракции 0. 5 мм с Мк=2,1, а также гранитный щебень фракции 5. 20 мм. В качестве водоредуцирующей добавки служил суперпластификатор С-3.

Исследования цементного камня проводили на образцах, составы которых приведены в табл. 2. Особенность составов заключалась в одинаковом содержании воды (В/(Ц+МК)=0,28) и равной дозировке трех разных видов МК. Дозировку С-3 подбирали для обеспечения одинаковой пластичности суспензий, соответствующей нормальной густоте цементного теста, В одном случае дозировку С-3 увеличили для определения влияния ее количества иа свойства цементного камня.


Пористость определяли взаимно дополняющими методами протонного магнитного резонанса с диапазоном измерений пор диаметром 1 • 1(Х3. 1 • 10-1 мкм [4J; малоугловой рентгеновской дифракцией с диапазоном измерений 2-10 А..3-10-1 мкм; ртутной по- рометрией с диапазоном измерений 1-10 1 . 4 -10 мкм; оптической микроскопией шлифов с диапазоном измерений 4-10. 1-103 мкм.

Метод определения пористости цементного камня с помощью протонного магнитного резонанса, разработанный в Санкт-Петербургском физико-техническом институте. основан на размерном эффекте температуры плавления льда, содержащегося в порах материала — температура плавления понижается при уменьшении их размера.

С помощью рентгенофазового анализа определяли степень гидратации цемента и содержание низкооснбвных гидросиликатов кальция — CSH (I). Идентификацию фаз проводили по международной таблице. Степень гидратации определяли по интенсивности основного рефлекса C3S. Количество CSH (1) устанавливали в результате сравнения интенсивности основного рефлекса P-CS, полученного на обожженных при 1000 °С образцах цементного камня, с эталоном (кварцем).

Результаты определения пористости исследуемых образцов цементного камня приведены в табл. 3. Из нее следует, что при несущественной (менее 9 %) разнице в общей пористости образцы отличаются характером распределения пор разного диаметра.

Используя одну из известных классификаций структуры цементного камня по уровню дисперсности [5] условно разделили поровое пространство исследованных образцов на поры надмолекулярного (1 • 10 3

В надмолекулярный уровень вписываются поры геля, образованные наиболее дисперсными новообразованиями, которые, в основном, и определяют прочность цементного камня [6]. Во второй уровень попадает основная часть гидратных новообразований и микрокапилляры, которые преимущественно определяют водо- и газонепроницаемость цементного камня. Микроскопический уровень включает некоторые новообразования, например Са(ОН)2. дефекты структуры в виде микротрещин и макрокапилляры, также влияющие на прочность и проницаемость цементного камня. Макроскопический уровень характеризуется дефектами и порами технологического свойства — вовлеченным воздухом, раковинами и т. д.

При введении в состав смесей МК объем пор геля изменяется в зависимости от вида и дозировок МК и С-3. При увеличении дозировок МК с 10 до 30 % массы цемента, гелевая пористость по сравнению с контрольным образцом возрастает на 3,5. 6,4 %. Повышенное количество С-3 способствует увеличению гелевой пористости на 3,3 %- В меньшей степени на гелевую пористость влияет вид МК. Разница между крайними значениями пористости при одинаковых дозировках микрокремнезема и пластичности смесей всего 1,9 %. Однако в образцах с Бкр, содержащего повышенное количество диоксида кремния, и Еф., имеющего наибольшую дисперсность, гелевая пористость все- таки выше.

Читайте так же:
Зоны цементной вращающейся печи

С увеличением дозировки МК возрастают степень гидратации цемента, содержание низкоосновных гидросиликатов кальция, прочность цементного камня (рис. 1). Повышение дозировки суперпластнфикатора также способствует росту степени гидратации, содержанию CSH (•) и прочности (рис. 2). Некоторое замедление степени гидратации с повышенной дозировкой С-3 в возрасте до 14 сут связано с экранирующим эффектом избыточного количества органической добавки в ранние сроки (см. рис. 2).



Сравнение фазового состава цементного камня с разными образцами МК показало, что наиболее благоприятным с точки зрения повышения степени гидратации, образования CSH (1) и прочности цементного камня является образец Бкр (рис. 3).

Объем капиллярных пор цементного камня с МК меньше, чем в контрольном образце. Пористость, особенно субмикроскопического уровня.

Технологическая пористость — с введением МК увеличивается. При этом образцы цементного камня с одинаковым количеством трех разновидностей МК имеют практически одинаковую пористость на макроскопическом уровне (3.7. 4.3), которая, очевидно, зависит от факторов, не связанных с химическими свойствами микронаполнителей.

Естественно ожидать влияния рассмотренных особенностей структуры цементного камня на свойства бетонов, которые исследовали на образцах, составы которых приведены в табл. 4. Смеси имели одинаковое водосодержание (В/(Ц-(-МК) =0,44) и пластичность (О.К. = 6. 8 см). Дозировки С-3 подбирали для обеспечения необходимой пластичности.

Водо- и воздухопроницаемость определяли на образцах-цилиндрах диаметром 150 мм, 50 мм, твердевших 28 сут в нормальных условиях в соответствии с ГОСТ 12730.5. Газопроницаемость устанавливали по эффективному коэффициенту диффузии ССГ в карбонизированном слое бетона на образцах-кубах с ребром 100 мм [7]. Морозостойкость определяли также на образцах-кубах при насыщении в 5%-иом растворе NaCl и замораживании на воздухе в соответствии с ГОСТ 10060.

В табл. 4 приведены данные о прочности, водо- и газонепроницаемости, а также морозостойкости бетонов с МК Как видно из результатов испытаний, добавки МК при всех дозировках повышают прочность и снижают водо- и газопроницаемость бетонов. Морозостойкость бетонов с МК остается на уровне контрольного только при дозировке МК 10 % массы цемента. Бетоны с повышенным содержанием МК менее стойки в условиях замораживания и оттаивания.

Таким образом выявляется четкая связь между свойствами бетона и особенностями структуры цементного камня — увеличение количества низкоосновных гидросиликатов кальция, повышенная гелевая и меньшая капиллярная пористость особенно на субмикр скопическом уровне, предопределяют рост прочности и снижение проницаемости бетона.

Введение в состав цементного теста и бетонных смесей добавок МК и С-3 изменяет структуру цементного камня: увеличивается количество пор геля диаметром (1. 5) 10_3 мкм уменьшается количество капиллярных нор диамет- ,ром 5-10_3. 4-10 мкм. Общая пористость остается на уровне обычного цементного камня.

Изменение гелевой и капиллярной пористости связано с изменением состава твердой фазы цементного камня: увеличением степени гидратации цемента и количества дисперсных низкоосновных гидросиликатов кальция CSH (1).

Особенности структуры цементного камня предопределяют свойства бетонов — повышение прочности, снижение водо- и газопроницаемости бетона.

Морозостойкость бетонов с добавкой МК до 10 % массы цемента остается на уровне контрольного бетона. Повышенные дозировки МК снижают стойкость к замораживанию и оттаиванию.

Минералогический и химический состав портландцементного клинкера. Свойство клинкерных минералов.

Химический состав процентах по массе:CaO63 – 66,SiO2 21 – 24,Al2O34 – 8, Fe2O3 2 – 4,

· Алит 3CaO SiO2 45 – 60 % самый важный минерал клинкера, определяющий быстроту твердение, прочность

· Белит2CaO SiO220 – 30 % второй по важности и содержанию, медленно твердеет но достигает высокой прочности.

· Трехкальциевый алюминатC3A 4 – 12 % очень быстро гидратируется и твердеет, но имеет небольшую прочность.

· Четырехкальциевый алюмоферритC4AF 10 – 20 % занимает промежуточное положение между алитом и белитом.

11. Свойства портландцемента и методы их определения.

Тонкость помола цемента оценивается путем просеивания (сито №008 0,08 мм 85%массы)

Водопотребность цемента определяется количеством воды, которое необходимо для получения цементного теста нормальной густоты. Определяется прибором Вика, игла не доходит до пластины 5 – 7 мм. Водопотребность цемента 24 – 28 %.

Сроки сватыванияопределяютсяс помощью прибора Вика. Начало схатывания игла не доходит до пластины 1 – 2 мм, конец схатывания игла погружается на 1 – 2 мм.

Равномерность изменения объема. Причиной неравномерного изменения объема цементного камня являются местные деформации, вызванные расширением свободного CaOи периклазаMgOвследствии их гидратации. По стандарту изготовленные из теста нормальной густоты образцы — лепешки через 24 ч предварительного твердения выдерживаю в течение 3 ч в кипящей воде. Лепешки не должны деформироваться; на них не допускается радиальных трещин.

Активностьпортландцемента называют его придел прочности при осевом сжатии половины балочек, испытанных в возрасте 28 сут. Активность и марку ПЦ определяют испытанием стандартных образцов – призм размером 4х4х16 см, через 28 суток твердения.

Термохимические свойства ПЦ зависят от минерального состава клинкера и тонкости помола.

Режим обжига сырьевой смеси для производства цемента, процессы, происходящие при обжиге.

· Зона испарения 70 – 200 о С происходит высушивание сырьевой смеси.

· Зона подогрева 200 – 700 о С сгорают органические примеси, удаляется кристаллохимическая вода и образуется безводный каолинит Al2O3 2SiO2.

· Зона декарбонизации 700 – 1100 о С появляется значительное количество свободного оксида кальция. Термическая диссоциация CaCO3 – это эндотермический процесс, идущий с большим поглощением теплоты. Происходит распад дегидратированных глинистых миниралов на оксиды (SiO2 Al2O3, Fe2O3).

· Зона экзотермических реакций 1100 – 1250 о С происходят твердофазные реакции образования 3CaO Al2O3, 4CaO Al2O3 Fe2O3 и 2CaO SiO2. Эти экзотермические реакции сопровождаются выделением большого количества тепла.

· Зона спекания 1300 – 1450 – 1300 о С частичное плавление материала и образование главного компонента минерала клинкера – алита.

Читайте так же:
Временный цемент для установки коронок

· Зона охлаждения

Виды коррозии цементного камня и пути ее предотвращения.

Физическая коррозия.Выщелачивание Ca(OH)2 происходит интенсивно при действии мягких вод, содержащих мало растворенных веществ (вода оборотного водоснабжения, конденсат, дождевая вода, вода горных рек, болотная вода). Для предотвращения ограничивают содержание алита до 50 %. Главным средством борьбы с выщелачиванием Ca(OH)2 является введение в цемент активных минеральных добавок (диатомит, трепел, ) применение плотного бетона.

Химические коррозии:

· Углекислотная коррозия под действием воды содержащей свободный диоксид углерода, который разрушает CaCO3

· Общекислотная коррозия — происходит под действием любых кислот, имеющих значение водородного показателя pH

Глиноземистый цемент. Его свойства и характерные особенности.

По минеральному составу и техническим свойствам такой цемент сильно отличается от ПЦ. ГЦ – быстротвердеющее и высокопрочное гидравлическое вяжущее вещество, получаемое путем тонкого измельчения клинкера, содержащего преимущественно низкоосновные алюминаты кальция. Однокальциевый алюминат CaO Al2O3определяет быстрое твердение и другие свойства ГЦ. В небольших количествах в нем также содержатся другие алюминаты кальция CaO 2Al2O3и алюмосиликат кальция – геленит 2CaO Al2O3 SiO2.Силикаты кальция представлены небольшим количеством белита. Для получения клинкера ГЦ сырьевую смесь, составляют известника CaCO3боксита Al2O3 nH2O.ГЦ обладает высокой прочностью если он твердеет при умеренной температуре. Замечательным свойством ГЦ является его необычно быстрое твердение, а сроки схватывания, почти такие же, как и ПЦ. Тепловыделение ГЦ при твердении примерно в 1,5 раза больше тепловыделения ПЦ. ГЦ применяют в специальных сооружениях, при спешных ремонтах и монтажных работах, для изготовления жаропрочных бетонов и растворов.Кроме того он входит в состав многих расширяющихся цементов.

Характерные особенности шлакопортландцемента и пуццоланового цемента.

Шлакопортландцемент и пуццолановый портландцемент, имеющие сходные физико-механические свойства, получают тонким измельчением портландцементного клинкера с повышенным количеством активных минеральных добавок. Различие этих цементов определяется видом добавки: пуццолановый портландцемент получают тонким измельчением клинкера с природной активной минеральной добавкой, а шлакопортландцемент с доменными гранулированными шлаками. Прочность шлакопортландцемента и пуццоланового портландцемента несколько ниже прочности обыкновенного портландцемента. Активные минеральные добавки состоят, из веществ, легко вступающих в химическое взаимодействие с Са (ОН)2 , при этом образуются гидросиликаты и гидроалюминаты кальция, сходные по составу с продуктами гидратации клинкерных минералов и обладающие клеящей способностью. Замена наиболее дорогой части портландцемента — клинкера — природной добавкой или промышленными отходами — шлаками на 10-12% снижает стоимость цемента, что имеет большое экономическое значение. Портландцементы и шлакопортландцементы обладают повышенной водостойкостью и низким тепловыделением. Они медленно твердеют в начальной период (хотя к 28 сутками прочность их приближается к прочности обыкновенного портландцемента) и имеют несколько меньшую морозостойкость и воздухостойкость.

16. Классификация бетонов. Крупный и мелкий заполнители для бетонов, назначения, требования к качеству.

По плотности

· Особо тяжелый более 2600 кг/м 3 заполнители: стальные опилки или зерна железные руды или барит.

· Тяжелый 2100 – 2600 кг/м 3 , плотные заполнители: кварцевый песок, щебень или гравий из плотных каменных парод.

· Облегченный 1800 – 2000 кг/м 3 ,(кирпичный щебень или крупнопористый).

· Легкий 1200 – 1800 кг/м 3 ,(шлак, пемза, туф).

· Особо легкий менее 1200кг/м 3 , пенобетон, газобетон.

По виду вяжущих веществ: цементный, цементно – полимерный, силикатный, шлакощелочной и др.

В зависимости от применения: обычный, гидротехнический, для стен зданий, для полов, тротуаров, дорожных и аэродромных покрытий, специального назначения.

Для обычных ЖБК должны иметь заданную прочность, для сооружений на открытом воздухе важна морозостойкость.

Для гидротехнических сооружений: высокая плотность, водонепроницаемость, морозостойкость, прочность, малая усадка, малым выделением теплоты, стойкостью против выщелачивающего действия, стойкость к минерализованных вод.

Для стен отапливаемых зданий: небольшую плотность и теплопроводность, прочность в соответствии с расчетом.

Ко всем бетонам и бетонным смесям: до затвердения бетонные смеси должны легко перемешиваться, транспортироваться и укладываться, не расслаиваться , бетон должен иметь определенную скорость твердения, расход цемента должен быть минемальным.

17. Основной закон прочности бетона формула Баломея – Скрамтаева.

Цемент при твердении химически связывает не более 20-25% воды от своей массы. Фактически же для обеспечения необходимой подвижности бетонной смеси берут 40-80% воды. Вода необходима также для смачивания поверхности песка и крупного заполнителя. Свободная, химически не связанная вода образует в бетоне поры. Чем больше пор, тем ниже будет прочность бетона.

На практике при подборе состава бетона пользуются линейной зависимостью:

Rб = А Rц (Ц/В b) (формула И.Боломея-Б.Г.Скрамтаева),

где: Rб — прочность бетона, Rц марка (активность) цемента, В/Ц — водоцементное отношение,

где А — коэффициент, учитывающий качество заполнителей (0,65; 0,6 и 0,55), b — постоянный коэффициент (для Ц/В =1,4-2,5 b=-0,5, а для Ц/В=2,5-3,3 b=+0,5). Бетоны с высоким цементно-водным отношением относятся к высокопрочным бетонам.

Как и из чего делают цемент: состав цемента, маркировка смесей и сфера их применения

Самым распространенным скрепляющим материалом в строительстве является цемент, который изготавливается на основе магнезиальных или карбонатно-силикатных горных пород. Последняя разновидность занимает более 90% рынка и называется портландцементом. Процесс производства включает несколько этапов, ассортимент выпускаемых минеральных вяжущих материалов широкий, узнать по маркировке область применения порошка будет полезно каждому строителю.

Из чего делают цемент — основное сырье

Исходными материалами для производства служат твердые полезные ископаемые, вблизи которых и располагают цементные заводы.

  • мел — мягкая горная порода белого цвета, состоит из карбоната кальция с примесью магния, оксидов металлов и зерен кварца;
  • мергель — естественная смесь из 50-75% кальцитовых производных с 25-50% силикатных глинистых образований, хорошо подходит для производства цементного клинкера;
  • ракушечник — это известняк из раковин морских животных, его метаморфизованная давлением при высокой температуре разновидность называется мрамором;
  • доломит — помимо кальциевого карбоната СаСО3, имеет в составе магниевую составляющую: MgCO3.

Глинистые породы, привносящие в клинкер силикаты, это лесс, суглинки и глинистые сланцы. Для удешевления производства и придания цементу особых свойств в технологии используют легирующие добавки — глинозем, железо, кремний, отходы металлургических заводов.

Что такое цементный клинкер

По химическому составу прокаленный щебень каждого из производителей может отличаться, приводится усредненный расклад в процентах:

Читайте так же:
Как разводиться цемент жидким стеклом

Цементный клинкер.

  • СаО — 67;
  • SiO2 — 22;
  • Al2O3 — 5;
  • Fe2O3 — 3.

Щебень из печи — не единственный компонент в производстве портландцемента. Для замедления времени схватывания конечного продукта размол гранул до тонкодисперсного порошка производится с добавлением в клинкер до 6% сульфата кальция CaSO3, содержащегося в гипсе или гипсовом камне.

Измельчение ингредиентов осуществляется шаровыми мельницами с перекачиванием готового продукта в многотонные силосы пневматическим транспортом.

Основные характеристики продукта

Показатели плотности цемента: насыпная — 900-1100 кг/м³, с уплотнением — 1400-1700. Значения истинного удельного веса достигают 3 т/м³. Существует несколько технических характеристик, по которым судят о качестве вяжущего порошка:

  1. Тонина помола — определяет активность цемента: чем меньше частички, тем большую поверхность в один слой они покрывают. Контрольные замеры выполняют рассеиванием на сите с ячейкой 80 мкм.
  2. Водопотребность — количество влаги, необходимой для гидратации цемента и придания тесту пластичности. Излишняя вода в растворе приводит к образованию пор и трещин, снижению прочности.
  3. Морозостойкость — способность изделий на основе цементного порошка выдерживать многократные заморозки и оттаивания без разрушения. Необходимого показателя добиваются специальными добавками при замешивании раствора.
  4. Время схватывания — в зависимости от густоты замеса находится в диапазоне 0,7-10 часов. Показатель зависит и от количества гипса, добавляемого в клинкер при размоле.
  5. Прочность определяется по разрушению образца, изготовленного из цемента от каждой партии выпущенного раствора. Возраст кубиков устанавливается стандартом — 28 дней.

Основные характеристики.

На все отгружаемые цементным заводом объемы заполняют паспорта качества, в которые вносят перечисленные характеристики. Потребители самостоятельно проводят входной контроль, чтобы подтвердить добросовестность поставщика.

Что такое марка цемента

После добавления воды масса перемешивается и остается твердеть на 28 дней. Заливается одновременно 6-10 металлоформ.

Из них произвольно отбирается 6 образцов и раздавливается под прессом. Среднее арифметическое давление рассчитывается по 4 кубикам, разрушившимся под наибольшей нагрузкой. Значения, измеренные в кг/см², укажут на марку цемента по ГОСТ 10178-85. Отображение напряжения в метрической системе единиц выполняется по ГОСТ 31108-2003 в МПа. Здесь распределение осуществляется по классу прочности цемента.

Получается, что для оценки прочностной характеристики одновременно пользуются старой и новой классификациями. Цифровой ряд марок: М200, М300, М400, М500, М600. Соответствующие значения класса твердости: В15; В22,5; В32,5; В42,5; В52,5.

Маркировка цемента

Приведенные обозначения прочностных показателей портландцемента — это только небольшая часть зашифрованной в полной маркировке информации о свойствах изготовленного цемента.

В условиях одновременного использования стандартов с прежними обозначениями и от 2003 г. многие коды несут идентичные сведения.

Производители цементов стараются донести информацию о качестве и свойствах продукции, применяя термины обоих стандартов.

Что обозначает маркировка цемента по виду добавок

Помимо основных компонентов, в состав вяжущего минерального вещества вводятся присадки, позволяющие применять цемент в бетонах специального назначения. Информация об особых свойствах закладывается в маркировку продукции. Буквами шифруются порошок и добавки:

  • ПЦ — портландцемент без улучшающих присадок;
  • ШПЦ — при размоле клинкера добавлен шлак в количестве ≥20%, продукт называется шлакопортландцементом;
  • ППЦ — пуццолановый цемент, используется при бетонировании в обводненных условиях (пуццоланы — это продукты деятельности вулканов: пепел, туфы, пемза);
  • СПЦ, ССПЦ, ССШПЦ — сульфатостойкие вяжущие, противокоррозионные;
  • Б — быстротвердеющий порошок;
  • БЦ — белый цемент; клинкер для его производства изготавливают из каолина и светлых сортов известняка;
  • Г — быстросхватывающийся глиноземистый порошок, сырьевыми составляющими для обжига являются карбонатные породы и бокситы;
  • ГФ — гидрофобный цемент для бетонных изделий в воде;
  • ПЛ — пластифицированный, обеспечивает удобство укладки раствора даже при низких температурах;
  • ВРЦ — влагонепроницаемый расширяющийся цемент, твердеет в любой среде.

Маркировка по виду добавок.

В маркировке ГОСТ 10178-85 количество добавок обозначается буквой и числом процентов: Д0, Д5, Д20. В конце шифра указывается стандарт, по которому изготовлен продукт. Пример: ПЦ 400-Д20-Б-ПЛ ГОСТ 10178-85 — портландцемент прочностью 400 кг/см² с добавками в количестве 20%, быстротвердеющий, пластифицированный.

Расшифровка маркировки цемента по новым нормативам

У каждого объединения есть признаки, указывающие на особенности изготовления:

  • I — портландцемент бездобавочный, состоит на 95-100% из цементного клинкера;
  • II — эта группа подразделяется на подклассы А с добавками 6-20% и В — 21-35%. Здесь же находятся пуццолановые цементы, содержащие Марки цемента и их применение

Действия по обустройству в зависимости от твердости вяжущего порошка:

  • М200 — цемент предназначен для штукатурных работ, изготовления бетона М100;
  • М300 — соответствует монолиту М200, применяется для бетонирования подстилающих поверхностей под фундаменты, заливки оснований под малоэтажные строения;
  • М400 — строительство железобетонных сооружений прочностью М300, дорожных покрытий, тротуарной плитки, бордюрных камней, опорных конструкций;
  • М500 — все виды наружных бетонных работ, изготовление аэродромных плит и гидротехнических сооружений из монолита М400.

Составы растворов могут различаться и задаются под условия возводимого объекта. Рецептура смесей определяется проектом.

Коррозия цементного камня

Цементный камень состоит из гелиевых и кристаллических продуктов гидратации цемента и многочисленных включений в виде негидратированных зерен клинкера. Основная масса новообразований при взаимодействии цемента с водой получается в виде гелевидной массы, состоящей в приемущественно из субмикрокристаллических частичек гидросиликата кальция. Гелеподобная масса пронизана относительно крупными кристаллами гидроксида кальция. Такое своеобразное «комбинированное» строение предопределяет специфические свойства цементного камня, резко отличающиеся от свойств других материалов – металлов, стекла, гранита и т.п. Например, с наличием гелиевой составляющей связана усадка при твердении на воздухе и набухание в воде, особенности работы под нагрузкой и другие свойства.

Читайте так же:
Стяжка пола цементная расход цемента

Коррозия цементного камня вызывается воздействием агрессивных газов и жидкостей на составные части затвердевшего портландцемента. Встречаются десятки веществ, могущих воздействовать на цементный камень и оказаться для него вредным. Несмотря на разнообразие агрессивных веществ, основные причины коррозии можно разделить на три вида: разложение составляющих цементного камня, растворение и вымывание гидроксида кальция; образование легкорастворимых солей в следствии взаимодействия гидроксида кальция и других составных частей цементного камня с агрессивными веществами и вымывание этих солей (кислотная, магнезиальная коррозия); образование в порах новых соединений, занимающих большой объем, чем исходные продукты реакции; это вызывает появление внутренних напряжений в бетоне и его растрескивание (сульфоалюминатная коррозия).

Коррозия первого вида

Коррозия первого вида. Выщелачивание гидроксида кальция происходит интенсивно при действии мягких вод. Содержащих мало растворенных веществ. К ним относятся воды оборотного водоснабжения, конденсат, дождевые воды, воды горных рек и равнинных рек в половодье, болотная вода. Содержание гидроксида кальция в цементном камне через 3 мес твердения составляет 10-15% (считая на СаО). После его вымывания и в результате уменьшения концентрации СаО (менее 1,1 г/л) начинается разложение гидросиликатов и гидроалюминатов кальция. Выщелачивание в количестве 15-30% от общего содержания в цементном камне вызывает понижение его прочности на 40-50% и более. Выщелачивание можно заменить по появлению белых подтеков на поверхности бетона.

Для ослабления коррозии выщелачивания ограничивают содержание трехкальциевого силиката в клинкера до 50%. Главным средством борьбы с выщелачиванием гидроксида кальция является введение активных минеральных добавок и применение плотного бетона. Выдерживание на воздухе бетонных блоков и свай применяемых для сооружения оснований, а также портовых и других гидротехнических сооружений повышает их стойкость.

Коррозия второго вида

Коррозия второго вида. Углекислотная коррозия развивается при действии на цементный камень воды, содержащей свободный двуоксид углерода в виде слабой угольной кислоты. Избыточный (сверх равновесного количества) двуоксида углерода разрушает карбонатную пленку бетона вследствие образования хорошо растворимого бикарбоната кальция.

Общекислотная коррозия происходит при действии растворов любых кислот, имеющих значения водородного показателя рН — подробно узнать о всех работах, выполняемых в составе обследования, можно в разделе: «Обследование конструкций, помещений, зданий, сооружений, инженерных сетей и оборудования.»

В процессе магнезиальной коррозии образуется растворимая соль (хлористый кальций или двуводный сульфат кальция), вымываемая из бетона. Гидроксид магния представляет бессвязную массу, не растворимую в воде, в следствии чего реакция происходит до полного израсходования гидроксид кальция.

Коррозия под действием минеральных удобрений

Коррозия под действием минеральных удобрений. Особенно вредны для бетона аммиачные удобрения – аммиачная селитра и сульфат аммония. Аммиачная селитра, состоящая в основном из нитрата аммония, подвергается гидролизу и поэтому дает в воде кислую реакцию. Нитрат аммония действует на гидроксид кальция.

Образующийся нитрат кальция хорошо растворяется в воде и вымывается из бетона. Хлористый калий КСI повышает растворимость Са(ОН)2 и ускоряет коррозию. Из числа фосфорных удобрений агрессивен суперфосфат, состоящий в основном из монокальциевого фосфата и гипса, но содержащий еще и некоторое количество свободной фосфорной кислоты.

Коррозия под влияние органических веществ

Коррозия под влияние органических веществ. Органические кислоты, как и неорганические, быстро разрушают цементный камень. Большой агрессивностью отличаются уксусная, молочная и винная кислоты. Жирные насыщенные и ненасыщенные кислоты (олеиновая, стеариновая, пальмитиновая и др.) разрушают цементный камень, так как при воздействии гидроксида кальция они омыляются. Поэтому вредны и масла, содержащие кислоты жирного ряда: льняное, хлопковое, а также рыбий жир. Нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла) не представляют опасности для бетона, если они не содержат нефтяных кислот или соединений серы. Однако надо учитывать, что нефтепродукты легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенол, могут агрессивно влиять на бетон.

Коррозия третьего вида

Коррозия третьего вида. Сульфоалюминатная коррозия возникает при действии на гидроалюминат цементного камня воды, содержащей сульфатные ионы. Образование в порах цементного камня малорастворимого трехсульфатного гидросульфоалюмината кальция (эттрингита) сопровождается увеличением объема примерно в 2 раза. Развивающееся в порах кристаллизационное давление приводит к растрескиванию защитного слоя бетона. Вслед за этим происходит коррозия стальной арматуры, увеличение растрескивания бетона и разрушение конструкции. С сульфоалюминатной коррозией необъходимо считаться при строительстве морских сооружений. Вместе с тем могут оказаться агрессивными сточные воды промышленных предприятий, а также грунтовые воды. Если в воде содержится сульфат натрия, то вначале с ним реагирует гидроксид кальция.

В последующем идет образование гидросульфоалюмината кальция вследствие взаимодействия получающегося сульфата кальция и гидроалюмината. Для борьбы с сульфоалюминатной коррозией применяется специальный сульфатостойкий портландцемент.

Щелочная коррозия

Щелочная коррозия может происходить в двух формах: под действием концентрированных растворов щелочей на затвердевший цементный камень и под влиянием щелочей, имеющихся в самом цементе. Если бетон насыщается раствором щелочи (едкого натрия или калия), а затем высыхает, то под влиянием углекислого газа в порах бетона образуется сода и поташ, которые, кристаллизуясь, расширяются в объеме, повреждают и разрушают цементный камень. Сильнее разрушается от действия сильных щелочей цемент с высоким содержанием алюминатов кальция.

Коррозия, вызываемая щелочами цемента, происходит вследствие процессов, протекающих внутри бетона между его компонентами. В составе цементного клинкера всегда содержится разное количество щелочных соединений. В составе заполнителей бетона, в особенности в песке, встречаются реакционно способные модификации кремнезема: опал, халцедон, вулканическое стекло. Они вступают при обычной температуре в разрушительное для бетона реакции со щелочами цемента. В результате образуются набухающие студенистые отложения белого цвета на поверхности зерен реакционно-способного заполнителя, появляется сеть трещин, поверхность бетона местами вспучивается и шелушится. Разрушение бетона может происходить через 10-15 лет после окончания строительства.

Авторы: редакционная статья ТехСтройЭкспертизы

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector